Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.6.337

Electrochemical Performance of Li4Ti5O12 Particles Manufactured Using High Pressure Synthesis Process for Lithium Ion Battery  

Ji, Sung Hwa (Department of Research & Development, ILSHINAUTOCLAVE Co.)
Jo, Wan Taek (Department of Research & Development, ILSHINAUTOCLAVE Co.)
Kim, Hyun Hyo (Department of Research & Development, ILSHINAUTOCLAVE Co.)
Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.28, no.6, 2018 , pp. 337-342 More about this Journal
Abstract
Using a high pressure homonizer, we report on the electrochemical performance of $Li_4Ti_5O_{12}(LTO)$ particles manufactured as anode active material for lithium ion battery. High-pressure synthesis processing is performed under conditions in which the mole fraction of Li/Ti is 0.9, the synthesis pressure is 2,000 bar and the numbers of passings-through are 5, 7 and 10. The observed X-ray diffraction patterns show that pure LTO is manufactured when the number of passings-through is 10. It is found from scanning electron microscopy analysis that the average size of synthesized particles decreases as the number of passings-through increases. $LiCoO_2-based$ active cathode materials are used to fabricate several coin half/full cells and their battery characteristics such as lifetime, rate capability and charge transfer resistance are then estimated, revealing quite good electrochemical performance of the LTO particles as an effective anode active material for lithium secondary batteries.
Keywords
lithium ion battery; anode active material; metal oxide; high pressure homogenizer; continuous manufacturing system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Yuan, R. Cai, K. Wang, R. Ran, S. Liu, and Z. Shao, Ceram. Int., 35, 1757 (2009).   DOI
2 S. C. Hong, H. P. Hong, B. W. Cho, and B. K. Na, Korean J. Chem. Eng., 27, 91 (2010).   DOI
3 S. H. Kim, H. Park, S. H. Jee, and H. S. Ahn, Korean J. Chem. Eng., 26, 485 (2009).   DOI
4 R. J. Yi and G. D. Jenq, J. Power Sources, 198, 294 (2012).   DOI
5 S. Huang, Z. Wen, X. Zhu, and Z. Lin, J. Power Sources, 165, 408 (2007).   DOI
6 X. L. Yao, S. Xie, H. Q. Nian, and C. H. Chen, J. Alloys Compd., 465, 375 (2008).   DOI
7 L. Xing, Q. Meizhen, H. Yongjian, and Y. Zuolong, Electrochim. Acta, 55, 2978 (2010).   DOI
8 N. Kiyoshi, N. Ryosuke, M. Tomoko, and M. Hiroshi, J. Power Sources, 117, 131 (2003).   DOI
9 N. Zhu, W. Liu, M. Q. Xue, Z. A. Xie, D. Zhao, M. N. Zhang, J. T. Chen, and T. B. Cao, Electrochim. Acta, 55, 5813 (2010).   DOI
10 P. Guo, H. H. Song, and X. H. Chen, Electrochem. Commun., 11, 1320 (2009).   DOI
11 S. H. Huang, Z. Y. Wen, X. J. Zhu, and Z. X. Lin, J. Electrochem. Soc., 152, A186 (2005).   DOI
12 S. Huang, Z. Wen, J. Zhang, Z. Gu, and X. Xu, Solid State Ionics, 177, 851 (2006).   DOI
13 H. Yu, X. Zhang, A. F. Jalbout, X. Yan, X. Pan, and H. Xie, Electrochim. Acta, 53, 4200 (2008).   DOI
14 G. Wang, J. Xu, M. Wen, R. Cai, R. Ran, and Z. Shao, Solid State Ionics, 179, 946 (2008).   DOI
15 K. Burapapadh, H. Takeuchi, and P. Sriamornsak, Adv. Mater. Res., 506, 286 (2012).   DOI