Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00472

Modified Glassy Carbon Electrode with Polypyrrole Nanocomposite for the Simultaneous Determination of Ascorbic acid, Dopamine, Uric acid, and Folic Acid  

Ghanbari, Khadijeh (Department of Chemistry, Faculty of physics and chemistry, School of Science, Alzahra University)
Bonyadi, Sepideh (Department of Chemistry, Faculty of physics and chemistry, School of Science, Alzahra University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.1, 2020 , pp. 68-83 More about this Journal
Abstract
A fast and simple method for synthesis of CuxO-ZnO/PPy/RGO nanocomposite by electrochemical manner have been reported in this paper. For testing the utility of this nanocomposite we modified a GCE with the nanocomposite to yield a sensor for simultaneous determination of four analytes namely ascorbic acid (AA), dopamine (DA), uric acid (UA), and folic acid (FA). Cyclic voltammetry (CV) and Differential pulse voltammetry (DPV) selected for the study. The modified electrode cause to enhance electron transfer rate so overcome to overlapping their peaks and consequently having the ability to the simultaneous determination of AA, DA, UA, and FA. To synthesis confirmation of the nanocomposite, Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and electrochemical impedance spectroscopy (EIS) were applied. The linearity ranges were 0.07-485 μM, 0.05-430 μM, 0.02-250 μM and 0.022-180 μM for AA, DA, UA, and FA respectively and the detection limits were 22 nM, 10 nM, 5 nM and 6 nM for AA, DA, UA, and FA respectively Also, the obtained electrode can be used for the determination of the AA, DA, UA, and FA in human blood, and human urine real samples.
Keywords
Electrochemical Sensor; Reduced Graphene Oxide; Ascorbic Acid; Dopamine; Uric Acid; Folic Acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Q. Huang, H. Zhang, S. Hu, F. Li, W. Weng, J. Chen, Q. Wang, Y. He, W. Zhang, X. Bao, Biosens. Bioelectron., 2014, 52, 277-280.   DOI
2 E. Laviron, J. Electroanal. Chem. Interfacial Electrochem. 1979, 101(1), 19-28.   DOI
3 R. Nicholson, I. Shain, Anal. Chem., 1964, 36(4), 706-723.   DOI
4 A. Bard, L. Faulkner, Electrochemical methods, 2nd ed., John Wiley & Sons, New York, 2001.
5 E.L. Ciolkowski, K.M. Maness, P.S. Cahlil, R.M. Wightman, Anal. Chem., 1994, 66(21), 3611-3617.   DOI
6 C. Diaz, C. Garcia, P. Iturriaga-Vasquez, M.J. Aguirre, J.P. Muena, R. Contreras, R. Ormazabal-Toledo, M. Isaacs, Electrochim. Acta, 2013, 111, 846-854.   DOI
7 C. Amatore, J.M. Saveant, J. Electroanal. Chem., 1978, 86(1), 227-232.   DOI
8 H. R. Zare, M.R. Shishehbore, D. Nematollahi, Electrochim. Acta, 2011, 58, 654-661.   DOI
9 N. Lavanya, E. Fazio, F. Neri, A. Bonavita, S.G. Leonardi, G. Neri, C. Sekar, J. Electroanal. Chem., 2016, 770, 23-32.   DOI
10 Q. Zhu, J. Bao, D. Huo, M. Yang, H. Wu, C. Hou, Y. Zhao, X. Luo, H. Fa, J. Electroanal. Chem., 2017, 799, 459-467.   DOI
11 E.J. Nestler, Cell, 1994, 79(6), 923-926.   DOI
12 W.H. Sebrell, S. Harris (Eds.), The Vitamins, Academic Press, NEW YORK, second ed., 1967.
13 O. Arrigoni, C.D. Tullio, Ascorbic acid: much more than just an antioxidant, Biochim. Biophys. Acta, 2002, 1569(1-3), 1-9.   DOI
14 N. Ben-Jonathan, Endocr Rev., 1985, 6(4), 564-589.   DOI
15 D.M. Jackson, A. Westlind-Danielsson, Pharmacol Ther, 1994, 64(2), 291-370.   DOI
16 R.J. Marttila, Handbook of Parkinson's disease, p. 35. in: W.C. Koller (Ed.), Marcel Dekker, New York, 1987.
17 V.V.S.E. Dutt, H.A. Mottola, Anal. Chem., 1974, 46(12), 1777-1781.   DOI
18 S.N. Young, Can. J. Physiol. Pharmacol. 1991, 69(7), 893-903.   DOI
19 S.N. Young, Can. J. Physiol. Pharmacol., 1991, 69(7), 893-903.   DOI
20 A. Gottas, A. Ripel, F. Boix, V. Vindenes, J. Mor, E.L. Oiestad, J. Pharmacol. Toxicol. Methods, 2015, 74, 75-79.   DOI
21 X. Wei, Z. Zhang, Z. Wang, Microchem. J., 2019, 145, 55-58.   DOI
22 W. Ga, L. Qi, Z. Liu, S. Majeed, S.A. Kitte, G. Xu, Sens. Actuators B, 2017, 238, 468-472.   DOI
23 H.L. Lee, S.C. Chen, Talanta, 2004, 64(3), 750-757.   DOI
24 J.H. An, D.K. Choi, K.J. Lee, J.W. Choi, Biosens. Bioelectron., 2015, 67, 739-746.   DOI
25 M. Hasanzadeh, N. Shadjoub, E. Omidinia, Methods, 2013, 219(1), 52-60.
26 S. Boroumand, M. Arab Chamjangali, Gh. Bagherian, Spectrochim. Acta Part A, 2017, 174, 203-213.   DOI
27 J.H. Ke, H.J. Tseng, C.T. Hsu, J.C. Chen, G. Muthuraman, J.M. Zen, Sens. Actuators B, 2008, 130(2), 614-619.   DOI
28 A. Babaei, A.R. Taheri, Sens. Actuators B, 2013, 176, 543-551.   DOI
29 A. Domenech, H. Garcia, M.T. Domenech-Carbo, M.S. Galletero, Anal. Chem., 2002, 74(3), 562-569.   DOI
30 Kh. Ghanbari, M. Moloudi, Anal. Biochem., 2016, 512, 91-102.   DOI
31 W.S.H. Jr, R.E. Offeman, J. Am. Chem. Soc., 1958, 80(6), 1339-1339.   DOI
32 Kh. Ghanbari, N. Hajheidari, Anal. Biochem., 2015, 473, 53-62.   DOI
33 I.C.O, Harmonization, Topic Q2 (R1) Validation of Analytical Procedures: Text and Methodology, 2005.
34 A. Pruna, Q. Shao, M. Kamruzzaman, Y.Y. Li, J.A. Zapien, D. Pullini, D. Busquets Mataix, A. Ruotolo, Appl. Surf. Sci., 2017, 392, 801-809.   DOI
35 T. Terasako, T. Yamanaka, S. Yura, M. Yagi, S. Shirakata, Thin Solid Films, 2010, 519(5), 1546-1551.   DOI
36 W. Wang, Y. Tu, L. Wang, Y. Liang, H. Shi, Appl. Surf. Sci., 2013, 264, 399-403.   DOI
37 A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nded.Wiley, USA, 2000.
38 A. Alqudami, S. Annapoorni, P. Sen, R.S. Rawat, Synth Met., 2007, 157(1), 53-59.   DOI
39 A.A. Abdelwahab, Y.B. Shim, Sens. Actuators B, 2015, 221, 659-665.   DOI
40 Kh. Ghanbari, N. Hajheidari, J. Polym. Res., 2015, 22(8), 152.   DOI
41 K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 2004, 306(5696), 666-669.   DOI
42 M. Arvand, T.M. Gholizadeh, Colloids Surf. B 2013, 103, 84-93.   DOI
43 R. Rezaei, M.M. Foroughi, H. Beitollahi, R. Alizadeh, Russ. J. Electrochem., 2018, 54(11), 860-866.   DOI
44 Kh. Ghanbari, S. Bonyadi, New J. Chem., 2018, 42(11), 8512-8523.   DOI
45 S. Stankovich, D.A. Dikin, G.H.B. Dommett, Nature, 2006, 442(7100), 282-286.   DOI
46 C. Tseng, Y. Chou, C. Liu, Y. Liu, M. Ger, Y. Shu, Mater. Res. Bull., 2012, 47(1), 96-100.   DOI
47 S. Luo, F. Su, C. Liu, J. Li, R. Liu, Y. Xiao, Y. Li, X. Liu, Q. Cai, Talanta, 2011, 86, 157-163.   DOI
48 A.A. Hathoot, U.S. Yousef, A.S. Shatla, M. Abdel-Azzem, Electrochim. Acta, 2012, 85, 531-537.   DOI
49 F. Shao, M.W.G. Hoffmann, J.D. Prades, R. Zamani, J. Arbiol, J.R. Morante, E. Varechkina, M. Rumyantseva, A. Gaskov, I. Giebelhaus, T. Fischer, S. Mathur, F. Hernandez-Ramirez, Sen. Actuators B, 2013, 181, 130-135.   DOI
50 C. Sun, G. Maduraiveeran, P. Dutta, Sens. Actuators B, 2013, 186, 117-125.   DOI
51 D. Bekermann, A. Gasparotto, D. Barreca, C. Maccato, E. Comini, C. Sada, G. Sberveglieri, G.Devi, R.A. Fischer, ACS Appl. Mater. Interfaces, 2012, 4(2), 928-934.   DOI
52 J. Huang, Y. Dai, C. Gu, Y. Sun, J. Liu, J. Alloys Compd., 2013, 575, 115-122.   DOI