• Title/Summary/Keyword: electrochemical reactions

Search Result 328, Processing Time 0.033 seconds

Real Time Spectroelectrochemical Experiments with a Multichannel Detector

  • Sun-Il Mho;Sally N. Holer;Bum-Soo Kim;Su-Moon Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.9
    • /
    • pp.739-743
    • /
    • 1994
  • A spectroelectrochemical system assembled with a white light source, bifurcated optical fiber, Oriel Multispec spectrograph, and a charge-coupled device (CCD) detector is described. The system is shown to be capable of acquiring a whole spectrum in the spectral range of 290-800 nm in 25 ms or a longer period during electrochemical experiments at reflective working electrodes such as platinum or mercury. The utility of the system in studying electrochemical reactions during the potential scan, galvanostatic electrolysis, or after the potential step is demonstrated.

Competitive electrochemical oxidation of reformate gas in SOFCs (고체 산화물 연료전지 음극에서 개질 가스의 경쟁적 전기화학 반응)

  • Kim, Yong-Min;Bae, Joong-Myeon;Bae, Gyu-Jong;Kim, Jung-Hyun;Lee, Chang-Bo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.5-8
    • /
    • 2008
  • SOFC (Solid oxide fuel cell) has an advantage in the term of fuel flexibility, comparing with other kinds of fuel cells. In SOFC and fuel reformer cooperation system, the reformate gas with the various $H_2$/CO ratios is delivered into the anode of SOFC. In this situation, electrochemical oxidation reactions of the reformate gas in the anode are complex and competitive. In this paper, the effects of the composition of $H_2$ and CO on the overall electrochemical oxidation at Ni-YSZ anode are studied by testing the open circuit voltage (OCV) and current-voltage characteristics of single cells.

  • PDF

Electrochemical Performance of Carbon Coated LiMn2O4 Nanoparticles using a New Carbon Source

  • Park, Jin Seo;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.139-145
    • /
    • 2016
  • The electrochemical performance of carbon-coated LiMn2O4 nanoparticles was reported. The polydopamine layer was introduced as a new organic carbon source. The carbon layer was homogeneously coated onto the surface of the LiMn2O4 nanoparticles because the polymerization process from the dopamine solution (in a buffer solution, pH 8.5) easily and uniformly formed a polydopamine layer. The phase integrity of LiMn2O4 deteriorated during the carbon-coating process due to oxygen loss, although the main structure was maintained. The carbon-coated sample led to improved rate capability because of the effect of the conductive carbon layer. Moreover, the carbon coating also enhanced the cyclic performance. This indicates that the carbon layer may suppress unwanted side reactions with the electrolytes and compensate for the low electronic conductivity of the pristine LiMn2O4.

Study on Electrochemical Property of Self-Assembled Viologen Monolayers Using Electrochemical Quartz Crystal Microbalance (EQCM) Method (EQCM법을 이용한 자기조립된 Viologen 단분자막의 전기화학적 특성 연구)

  • Lee, Dong-Yun;Park, Sang-Hyun;Park, Jae-Chul;Kwon, Young-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.107-110
    • /
    • 2006
  • We fabricated the monolayers onto QCM by self-assembly using viologen, which has been widely used as electron acceptor. A gold electrode of the QCM was cleaned by piranha solution and prepared the ethanol-acetonitrile(1:1) solution with 2 m mol/l viololgen compounding of pure hi gas. We determined the time dependence to resonant frequency shift during self-assembly process and the electrochemical behavior of the self-assembled viologen monolayers by cyclic voltammetry. With increasing scan rate, the redox peak current of the viologen increased linearly. This was signified that the redox reaction was reversible. The EQCM measurements revealed the anions transfer during redox reactions, respectively. From the EQCM data, the well-defined shape peaks were nearly equal charges by cyclic voltammetry.

Corrosion Protection Performance of PVDF/PMMA-Blended Coatings by Electrochemical Impedance Method

  • Kim, Yun Hwan;Kwon, Yong Sung;Shon, Min Young;Moon, Myung Jun
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • The effect of mixing ratio on the corrosion protection of carbon steel coated by a film composed of poly(vinylidene) fluoride (PVDF) and poly(methyl methacrylate) (PMMA) was examined using electrochemical impedance spectroscopy. Surface crystallization behavior and thermal properties of the PVDF/PMMA coated carbon steel were evaluated using polarized optical microscopy and differential scanning calorimetry, respectively. A Maltese cross-pattern spherulite crystal was observed in the PVDF/PMMA coating film, which became more apparent with increasing PVDF content. The highest corrosion protection performance was achieved with 60 wt.% PVDF-coated carbon steel, and delamination and corrosion reactions were observed for 20 wt.% PVDF-coated carbon steel. Further, corrosion protection performance with an amorphous/crystal mixture (PVDF/PMMA, 60/40 (w/w)) was better than those observed in the amorphous domain and the perfect-crystal domain of the PVDF/PMMA blended coating system.

Determination of Electrode Potential in Micro Electrochemical Machining of Nickel (니켈의 미세 전해 가공 시 전극 전위의 선정)

  • Nam H.S.;Park B.J.;Kim B.H.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.585-588
    • /
    • 2005
  • The dissolution characteristic of metal shows the different tendency according to the applied electrical potential, the kind of electrolyte and pH value, etc. In the micro electrochemical machining (ECM), unfavorable oxide/passive layer formation and overall corrosion of electrodes must be prevented. The anodic polarization curve of nickel has distinct three dissolution regions, i.e. two active regions and the transpassive dissolution region. In this paper, the stable electrode potentials of workpiece and tool were determined in sulfuric acid and hydrochloric acid solution, respectively. In each solution, different machining property was shown and possible electrochemical reactions were discussed. On the basis of this experiment, the methodology to obtain the proper electrode potential was suggested.

  • PDF

Principles and Applications of Galvanostatic Intermittent Titration Technique for Lithium-ion Batteries

  • Kim, Jaeyoung;Park, Sangbin;Hwang, Sunhyun;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.19-31
    • /
    • 2022
  • Lithium-ion battery development is one of the most active contemporary research areas, gaining more attention in recent times, following the increasing importance of energy storage technology. The galvanostatic intermittent titration technique (GITT) has become a crucial method among various electrochemical analyses for battery research. During one titration step in GITT, which consists of a constant current pulse followed by a relaxation period, transient and steady-state voltage changes were measured. It draws both thermodynamic and kinetic parameters. The diffusion coefficients of the lithium ion, open-circuit voltages, and overpotentials at various states of charge can be deduced by a series of titration steps. This mini-review details the theoretical and practical aspects of GITT analysis, from the measurement method to the derivation of the diffusivity equation for research cases according to the specific experimental purpose. This will shed light on a better understanding of electrochemical reactions and provide insight into the methods for improving lithium-ion battery performance.

Hybrid Energy Storage Mechanism Through Solid Solution Chemistry for Advanced Secondary Batteries (고성능 이차 전지용 하이브리드 에너지 저장 메커니즘을 위한 고용체 화학)

  • Sion Ha;Kyeong-Ho Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.11-25
    • /
    • 2024
  • Lithium-ion batteries (LIBs) have attracted great attention as the common power source in energy storage fields of large-scale applications such as electrical vehicles (EVs), industries, power plants, and grid-scale energy storage systems (ESSs). Insertion, alloying, and conversion reactions are the main electrochemical energy storage mechanisms in LIBs, which determine their electrochemical properties and performances. The electrochemical reaction mechanisms are determined by several factors including crystal structure, components, and composition of electrode materials. This article reviews a new strategy to compensate for the intrinsic shortcomings of each reaction mechanism by introducing the material systems to form a single compound with different types of reaction mechanisms and to allow the simultaneous hybrid electrochemical reaction of two different mechanisms in a single solid solution phase.

Applications and Challenges of Lithium-Sulfur Electrochemical Batteries

  • Mohammed Jasim M. Al Essa
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • This paper presents applications of lithium-sulfur (Li-S) energy storage batteries, while showing merits and demerits of several techniques to mitigate their electrochemical challenges. Unmanned aerial vehicles, electric cars, and grid-scale energy storage systems represent main applications of Li-S batteries due to their low cost, high specific capacity, and light weight. However, polysulfide shuttle effects, low conductivities, and low coulombic efficiencies signify key challenges of Li-S batteries, causing high volumetric changes, dendritic growths, and limited cycling performances. Solid-state electrolytes, interfacial interlayers, and electrocatalysts denote promising methods to mitigate such challenges. Moreover, nanomaterials have capability to improve kinetic reactions of Li-S batteries based on several properties of nanoparticles to immobilize sulfur in cathodes, stabilizing lithium in anodes while controlling volumetric growths. Li-S energy storage technologies are able to satisfy requirements of future markets for advanced rechargeable batteries with high-power densities and low costs, considering environmentally friendly systems based on renewable energy sources.

Electrochemical Characteristic on Lithium Intercalation into the Interface between Organic Electrolyte and Amorphous WO3 Thin Film Prepared by e-beam Evaporation Method (e-beam 증발법으로 제조된 비정질 WO3박막과 전해질 계면으로 삽입되는 리튬의 층간 반응에 관한 전기화학적 특성)

  • Min, Byoung-Chul;Sohn, Tae-Won;Ju, Jeh-Beck
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1022-1028
    • /
    • 1997
  • This work was performed to study the characteristics of electrochemical intercalation reactions occurring at the interface between the organic electrolyte and tungsten trioxide thin film (thickness of $4000{\AA}$) prepared by e-beam evaporation method as cathodically coloring oxide with regard to the electrochromism by the intercalating reactions of the lithium cation in the 1M $LiClO_4/PC$ organic solution. The characteristics of electrochemical intercalation reactions were investigated by various DC electrochemical methods such as cathodic Tafel polarization test, multiple and the single sweep cyclic voltammetry and the coulomety titrations method. The surfaces of thin films were observed with the patterns of X ray diffraction after the coloring and bleaching reactions. In comparison with the previous results that $WO_3$ thin film intersely detached from the surface of electrode when the hydrogen cation was intercalated into $WO_3$ thin film in the o.1N $H_2SO_4$ aqueous solution, the intercalation reaction of lithium cation into $WO_3$ thin film in the 1M $LiClO_4/PC$ organic solution was shown that the stable bleaching and coloration was appeared within 1.0V of the applied overpotential. When the overpotential of electrochromic reaction for lithium cation in the 1M $LiClO_4/PC$ organic solution had been applied up to 1.5V, the accumulation phenomenon of lithium in amorphous $WO_3$ thin film layer occurred because the inserted lithium into amorphous $WO_3$ thin layer for coloring process was not fully removed from the thin layer to the electrolyte during bleaching process. It was found that there is a limitation of applied overpotential for coloring process by the reduction of the current densities of bleaching and coloration after few number of coloring and bleaching cycles.

  • PDF