Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.1.1

Corrosion Protection Performance of PVDF/PMMA-Blended Coatings by Electrochemical Impedance Method  

Kim, Yun Hwan (COEX technical team, PPG Industrials (Korea))
Kwon, Yong Sung (Department of Industrial Chemistry, Pukyong National University)
Shon, Min Young (Department of Industrial Chemistry, Pukyong National University)
Moon, Myung Jun (Department of Industrial Chemistry, Pukyong National University)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.1, 2018 , pp. 1-8 More about this Journal
Abstract
The effect of mixing ratio on the corrosion protection of carbon steel coated by a film composed of poly(vinylidene) fluoride (PVDF) and poly(methyl methacrylate) (PMMA) was examined using electrochemical impedance spectroscopy. Surface crystallization behavior and thermal properties of the PVDF/PMMA coated carbon steel were evaluated using polarized optical microscopy and differential scanning calorimetry, respectively. A Maltese cross-pattern spherulite crystal was observed in the PVDF/PMMA coating film, which became more apparent with increasing PVDF content. The highest corrosion protection performance was achieved with 60 wt.% PVDF-coated carbon steel, and delamination and corrosion reactions were observed for 20 wt.% PVDF-coated carbon steel. Further, corrosion protection performance with an amorphous/crystal mixture (PVDF/PMMA, 60/40 (w/w)) was better than those observed in the amorphous domain and the perfect-crystal domain of the PVDF/PMMA blended coating system.
Keywords
Corrosion; EIS; PVDF; PMMA; Crystallization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Hinderliter, K. Allahar, G. Bierwagen, D. Tallman, S. Croll, J. Coating Tech. Research, 2008, 5(4), 431-438.   DOI
2 M. Barletta, S. Guarino, G. Rubino, F. Trovalusci, V. Tagliaferri, Prog Org Coat., 2014, 77(3), 701-711.   DOI
3 S.A. Lindqvist, Corrosion, 1985, 41(2), 69-75.   DOI
4 F. Bellucci, L. Nicodemo, Corrosion, 1993, 49(3), 235-247.   DOI
5 T. Nquyen, D. Bentz, E. Byrd, J Coating Technol, 1995, 67(844), 37-46.
6 ZofiaKolek, Prog Org Coat, 1997, 30(4), 287-292.   DOI
7 P. Bonora, F. Deflorian, L. Fedrizzi, Electrochim acta, 1996, 41(7-8), 1073-1082.   DOI
8 B. Bajat, V. Miskovic, Z. Kacrevic, Prog Org Coat, 2003, 47(1), 49-54.   DOI
9 D.A. Seiler, PVDF in the chemical process industry. In Modern Fluoropolymers; Scheirs, J., Ed. p. 487-505, Wiley, Chichester, UK, 1997.
10 T. Nishi, T.T. Wang, Macromolecules, 1995, 8(6), 909-915.   DOI
11 C. Huang, L. Zhang, J. Appl. Polym. Sci., 2004, 92(1), 1-5.   DOI
12 E. Roerdink, G. Challa, Polymer, 1978, 19(2), 173-178.   DOI
13 D.J. Hourston, I.D. Hughes, Polymer, 1977, 18(11), 1175-1178.   DOI
14 J. Mijovic, H. Luo, C.D. Han, Polym. Eng. Sci, 1982, 22(4), 234-240.   DOI
15 S. R Murff, J. W. Barrow, D. R. Paul, Adv Chem Ser, 1986, 211, 313-324.
16 Huang C and Zhang L, J Appl Polym Sci, 2004, 92(1), 1-5.   DOI
17 M. Zhang J, Wang XL and S. Wang, Appl Surf Sci, 2007, 253(20), 8377-8388.   DOI
18 IS. Elashmawi and NA. Hakeem, Polym Eng Sci, 2008, 48(5), 895-901.   DOI
19 E. Benedetti, S. Catanorchi, A. D'Alessio, P. Vergamini, F. Ciardelli, M.Pracella, Polym Int, 1998, 45(4), 373-382.   DOI
20 Y. R. Yoo, H. H. Cho, S. Take, J. G. Kim, Y. S. Kim, Met. Mater. Int, 2006, 12(3), 255-261   DOI
21 H. Sasaki, P.K. Bala, H. Yoshida, E. Ito, Polymer, 1995, 36, 4805-4810.   DOI
22 N. D. Nam, J. G. Kim, S. M. Park, and N. E. Lee, Met. Mater. Int, 2008, 14(2), 197-201.   DOI