• Title/Summary/Keyword: electrochemical reaction

Search Result 1,207, Processing Time 0.032 seconds

Cathode materials advance in solid oxide fuel cells (고체산화물연료전지 공기극의 재료개발동향)

  • Son, Young-Mok;Cho, Mann;Nah, Do-Baek;Kil, Sang-Cheol;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • A solid oxide fuel cells(SOFC) is a clean energy technology which directly converts chemical energy to electric energy. When the SOFC is used in cogeneration then the efficiency can reach higher than 80%. Also, it has flexibility in using various fuels like natural gases and bio gases, so it has an advantage over polymer electrolyte membrane fuel cells in terms of fuel selection. A typical cathode material of the SOFC in conjunction with yttria stabilized zirconia(YSZ) electrolyte is still Sr-doped $LaMnO_3$(LSM). Recently, application of mixed electronic and ionic conducting perovskites such as Sr-doped $LaCoO_3$(LSCo), $LaFeO_3$(LSF), and $LaFe_{0.8}Co_{0.2}O_3$(LSCF) has drawn much attention because these materials exhibit lower electrode impedance than LSM. However, chemical reaction occurs at the manufacturing temperature of the cathode when these materials directly contact with YSZ. In addition, thermal expansion coefficient(TEC) mismatch with YSZ is also a significant issue. It is important, therefore, to develop cathode materials with good chemical stability and matched TEC with the SOFC electrolyte, as well as with high electrochemical activity.

The Effect of Reaction Temperature for Synthesis of LiMn2O4 by Calcination Process and the Electrochemical Characteristics (소성법에 의한 LiMn2O4의 제조시 반응 온도의 영향과 전기화학적 특성)

  • Lee, Chul-Tae;Lee, Jin-Sik;Kim, Hyun-Joong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.220-225
    • /
    • 1998
  • The spinel structured $LiMn_2O_4$ was prepared from $Li_2CO_3$ and $MnO_2$ by calcination at various temperatures in the range of $750{\sim}900^{\circ}C$. It was found that the most suitable cubic structure of $LiMn_2O_4$ was obtained by heating at $850^{\circ}C$ for 12 hrs. However, in the calcination at $900^{\circ}C$, $Mn^{4+}$ of 0.06M was changed to $Mn^{+3}$ by the oxygen loss, so that it has been shown that the formula has changed to $LiMn_2O_{3.97}$. This phenomena were in agreement with the Jahn-Teller distortion by the increment of $Mn^{+3}$ ion on the octahedral sites of the spinel structured $LiMn_2O_4$. The results showed that after 15 charge/discharge cycles in the voltage range from 3.5V to 4.3V versus Li/$Li^+$ with a current density of $0.25mA/cm^2$, the spinel structured $LiMn_2O_4$ that was prepared at $900^{\circ}C$ showed a lower discharge capacity, 82~50 mAh/g, while the $LiMn_2O_4$, prepared at $850^{\circ}C$, showed the discharge capacity of 102~64 mAh/g.

  • PDF

Structural and electrochemical characterization of K2NiF4 type layered perovskite as cathode for SOFCs (K2NiF4 type 층상 페롭스카이트 구조 La(Ca)2Ni(Cu)O4-δ의 SOFC 양극 특성 및 결정구조 평가)

  • Myung, Jae-ha;Hong, Youn-Woo;Lee, Mi Jai;Jeon, Dae-Woo;Lee, Young-Jin;Hwang, Jonghee;Shin, Tae Ho;Paik, Jong Hoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.3
    • /
    • pp.116-120
    • /
    • 2015
  • $La_2NiO_{4+{\delta}}$ based oxides, a mixed electronic-ionic conductors (MIECs) with $K_2NiF_4$ type structure, have been considerably investigated in recent decades as electrode materials for advanced solid oxide fuel cells (SOFCs) due to their high electrical conductivity, and oxidation reduction reaction (ORR). In this study, structure properties of $La(Ca)_2Ni(Cu)O_{4+{\delta}}$ were studied as a potential cathode for intermediate temperature SOFCs (IT-SOFCs).

A Study on the Synthesis and the Electrochemical Properties of $LiNi_{1-y}$${Co_y}{O_2}$from $Li_2$$CO_3$, ${NiCO_3}$, and $CoCO_3$ ($Li_2$$CO_3$, ${NiCO_3}$, $CoCO_3$로부터 $LiNi_{1-y}$${Co_y}{O_2}$의 합성 및 전극특성 연구)

  • Rim, Ho;Kang, Seong-Gu;Chang, Soon-Ho;Song, Myoung-Youp
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.6
    • /
    • pp.515-521
    • /
    • 2001
  • 출발 물질로서 L $i_2$C $O_3$, NiC $O_3$, CoC $O_3$를 사용하고 조성과 합성 온도를 변화시켜, 고온 고상법에 의하여 LiN $i_{1-y}$ $Co_{y}$ $O_2$(y=0.1, 0.3, 0.5)를 합성하였다. 합성과 시료들의 결정구조, 미세구조 그리고 전기화학적 특성을 조사하였다. 80$0^{\circ}C$와 8$50^{\circ}C$에서 제조한 L $i_{x}$N $i_{1-y}$ $Co_{y}$ $O_2$는, 삼방정계(space group: R3m)의 $\alpha$-NaFe $O_2$구조로 결정화되어 있는 층상 구조를 형성하였다. LiN $i_{1-y}$ $Co_{y}$ $O_2$(y=0.1, 0.3, 0.5)는 Co의 양이 증가함에 따라 a축과 c축의 크기가 감소하였는데, 이는 코발트 이온의 크기가 니켈 이온의 크기보다 작은데 기인하는 것이다. 그러나 c축과 a축의 크기의 비(c/a)가 증가하였음은 이차원적 구조가 잘 발달됨을 보여준다. 니켈에 대한 코발트의 치환량에 따른 리튬 이온의 삽입/추출 가역성은 코발트의 치환량이 증가하면서 증가하여 y=0.3인 LiN $i_{0.9}$ $Co_{0.1}$ $O_2$에서 대체로 우수하였고 그 이상으로 y값이 증가하면 가역성이 나빠졌다. 80$0^{\circ}C$에서 합성한 LiN $i_{0.9}$ $Co_{0.1}$ $O_2$가 가장 큰 초기 방전 용량 146 mAh/g을 나타내었으며, 싸이클링 성능도 비교적 우수하였다. 8$50^{\circ}C$에서 합성한 LiN $i_{0.9}$ $Co_{0.1}$ $O_2$와 LiN $i_{0.7}$ $Co_{0.3}$ $O_2$가 우수한 싸이클링 성능을 보였다.다. 싸이클링 성능을 보였다.다.보였다.다.

  • PDF

Numerical Simulation of Lithium-Ion Batteries for Electric Vehicles (전기 자동차용 리튬이온전지 개발을 위한 수치해석)

  • You, Suk-Beom;Jung, Joo-Sik;Cheong, Kyeong-Beom;Go, Joo-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.649-656
    • /
    • 2011
  • A model for the numerical simulation of lithium-ion batteries (LIBs) is developed for use in battery cell design, with a view to improving the performances of such batteries. The model uses Newman-type electrochemical and transfer $theories^{(1,2)}$ to describe the behavior of the lithium-ion cell, together with the Levenberg-Marquardt optimization scheme to estimate the performance or design parameters in nonlinear problems. The mathematical model can provide an insight into the mechanism of LIB behavior during the charging/discharging process, and can therefore help to predict cell performance. Furthermore, by means of least-squares fitting to experimental discharge curves measured at room temperature, we were able to obtain the values of transport and kinetic parameters that are usually difficult to measure. By comparing the calculated data with the life-test discharge curves (SB LiMotive cell), we found that the capacity fade is strongly dependent on the decrease in the reaction area of active materials in the anode and cathode, as well as on the electrolyte diffusivity.

Synthesis and Characterization of Power Conversion Efficiency of D/A Structure Conjugated Polymer Based on Benzothiadiazole-Benzodithiophene (Benzothiadiazole-benzodithiophene을 기반으로 한 D/A구조의 공액 고분자 합성 및 광전변환 효율 특성 개선 연구)

  • Seong, Ki-Ho;Yun, Dae-Hee;Woo, Je-Wan
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.537-543
    • /
    • 2013
  • In this study, the push-pull structure polymer for organic photo voHaics (OPVs) was synthesized and characterized. The poly{4,8-didodecyloxybenzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]-thiadiazole} (PDBDT-TBTD) was synthesized by Stille coupling reaction using the benzothiadiazole (BTD) derivative as an electron acceptor and benzodithiophene (BDT) derivative as an electron donor. The structure of monomers and polymers was identified by $^1H-NMR$ and GC-MS. The optical, physical and electrochemical properties of the conjugated polymer were identified by GPC, TGA, UV-Vis and cyclic voltammetry. The number average molecular weight ($M_n$) and initial decomposition temperature (5% weight loss temperature, $T_d$) of PDBDT-TBTD were 6200 and $323^{\circ}C$, respectively. The absorption maxima on the film was about 599 nm and the optical band gap was about 1.70 eV. The structure of device was ITO/PEDOT : PSS/PDBDT-TBTD : $PC_{71}BM/BaF_2/Ba/Al$. PDBDT-TBTD and $PC_{71}BM$ were blended with the weight ratio of 1:2 which were then used as an optical active layer. The power conversion efficiency (PCE) of fabricated device was measured by solar simulator and the best PCE was 2.1%.

Structural and Electrochemical Properties of Li2Mn0.5Fe0.5SiO4/C Cathode Nanocomposite

  • Chung, Young-Min;Yu, Seung-Ho;Song, Min-Seob;Kim, Sung-Soo;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4205-4209
    • /
    • 2011
  • The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ silicate was prepared by blending of $Li_2MnSiO_4$ and $Li_2FeSiO_4$ precursors with same molar ratio. The one of the silicates of $Li_2FeSiO_4$ is known as high capacitive up to ~330 mAh/g due to 2 mole electron exchange, and the other of $Li_2FeSiO_4$ has identical structure with $Li_2MnSiO_4$ and shows stable cycle with less capacity of ~170 mAh/g. The major drawback of silicate family is low electronic conductivity (3 orders of magnitude lower than $LiFePO_4$). To overcome this disadvantage, carbon composite of the silicate compound was prepared by sucrose mixing with silicate precursors and heat-treated in reducing atmosphere. The crystal structure and physical morphology of $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ was investigated by X-ray diffraction, scanning electron microscopy, and high resolution transmission electron microscopy. The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$/C nanocomposite has a maximum discharge capacity of 200 mAh/g, and 63% of its discharge capacity is retained after the tenth cycles. We have realized that more than 1 mole of electrons are exchanged in $Li_2Mn_{0.5}Fe_{0.5}SiO_4$. We have observed that $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ is unstable structure upon first delithiation with structural collapse. High temperature cell performance result shows high capacity of discharge capacity (244 mAh/g) but it had poor capacity retention (50%) due to the accelerated structural degradation and related reaction.

Electrochemistry for Redox Polymer Film of N,N'-bis(3-pyrrol-1-yl-propyl)-4,4'-bipyridinium Ion (N,N'-bis(3-pyrrol-1-yl-propyl)-4,4'-bipyridinium이온의 산화-환원 고분자 피막에 대한 전기화학)

  • Cha, Seong-Keuck
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.6-14
    • /
    • 2001
  • The monomer N,N'-bis(3-pyrrol-1-yl-propyl)-4,4'-bipyridinium$(PF_6)_2$ was electrochemically polymerized on glassy carbon electrode surface. This polymer film electrode has electroactive sites on its bipyridinium ions distributed at the polymer strands. The formal potentials of the electrodes were -0.41V and -0.81V(vs. SSCE) for each step at phosphate buffer(pH=5.70). The diffusion coefficients of the dopants ions into the polymer matrix were $1.57{\times}10^{-4}$ and $4.35{\times}10^{-5}cm^2s^{-1}$ for first and second redox couple, respectively. The rate constants of electron transfer at $V^{2+/+}$ of the first step was a $57.53s^{-1}$, which was 22 times higher than $V^{+/0}$ one having $2.63s^{-1}$ in the solution. The charge transfer resistance of the polymer film was influenced by the dopant ion of the electrolyte. Thus the resistances were 22.63, 16.81, 12.44 and $11.36k{\Omega}$ for $LiClO_4,\;NaClO_4,\;KClO_4$, and phosphate buffer, respectively. The reaction order of the electropolymerization was first order and the rate constant of the polymerization was $1.31{\times}10^{-1}s^{-1}$ as determined by EQCM method. The G.C./p-BPB type electrode doped with phosphate ions showed a stability and reproducibility in CV procedure over 20 cycles.

  • PDF

Experimental study for removing silver sulfide from silver objects by Nd:YAG laser cleaning (은제품의 황화은 부식층 제거를 위한 Nd:YAG 레이저클리닝 실험 연구)

  • Lee, Hyeyoun;Cho, Namchul
    • Journal of Conservation Science
    • /
    • v.30 no.1
    • /
    • pp.95-101
    • /
    • 2014
  • Silver objects tarnish with black from reaction with sulfurous acid or hydrogen sulfide of atmospheric. Blackening of silver objects results from formation of silver sulfide($Ag_2O$) on the surface. Silver sulfide usually is usually removed by conservation treatment. There are several cleaning methods such as chemical, electrochemical and micro-abrasion cleaning, but all of them consume silver. This study investigated the safe and effective parameter of laser cleaning by test on silver coupons. Laser cleaning is a selective process for the removal of specific substances. At first, laser cleaning applied to plain silver coupons, which were not corroded, to find out the safe range of laser energy density. From results, plain silver coupons were not changed at 1064nm below $4.00J/cm^2$ and at 532nm below $2.39J/cm^2$. The corrosion layer(silver sulfide) of artifical corroded silver coupons was removed at 1064nm with $2.39J/cm^2$ by 5~10 pulses and at 532nm with $1.19J/cm^2$ by 5~10 pulses. The removal thickness of corrosion layer was about 13-25nm per a laser pulse using AES analysis. In addition, laser cleaning tested the tarnish silver rings based on the results of silver coupons. As a result of test, the black surface were clean successfully and gave luster of silver, which showed the application possibility of laser cleaning for silver objects.

Synthesis and Characterization of Octamethylenethiafulvalene Compounds with Osmium, Iridium, Platinium and Gold Chloride (Octamethylenethiafulvalene과 염화오스뮴, 이리듐, 백금 및 금 화합물의 합성과 특성에 관한 연구)

  • Jeong, Chan Kyou;Lee, Hong Woo;Kim, Young Jin;Choi, Sung Nak;Kim, Young Inn
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.5
    • /
    • pp.442-447
    • /
    • 2001
  • The charge-transfer compound (OMTTF)AuCl$_4$ was prepared from the direct reaction of octamethylenethiafulvalene (OMTTF) with HAuCl$_4{\cdot}xH_2$O in THF. (OMTTF)$_2PtCl_4$, (OMTTF)_2IrCl_6{\cdot}2H_2$O, and (OMTTF)Os$Cl_5{\cdot}THF$ were also formed using $H_2PtCl_6{\cdot}xH_2O$, $H_2IrCl_6{\cdot}xH_2O$ and $H_2OsCl_6$, respectively. The prepared compounds were characterized by magnetic (EPR, magnetic susceptibility), spectroscopic (IR, UV-Vis), electrochemical (CV) methods, and the powdered electrical conductivity measurement. The powdered electrical conductivities at room temperature were ~$10^{-7}S{\cdot}cm^{-1}$. The experimental results show that $OMTTF^+$ monocation radicals exist in all of the prepared compounds. The redox potential of OMTTF supports that $OMTTF^+$ is relatively stable. The magnetic properties indicate that there are significant magnetic interactions between the localized odd electrons on the central metal (Ir and Os) ions and the odd electrons resided on $OMTTF^+$ cation radicals in both (OMTTF) $_2IrCl_6{\cdot}2H_2O$ and (OMTTF)$OsCl_5{\cdot}THF$.

  • PDF