• Title/Summary/Keyword: electrochemical mechanical polishing

Search Result 55, Processing Time 0.034 seconds

Electrochemical Polarization Characteristics and Effect of the CMP Performances of Tungsten and Titanium Film by H2O2 Oxidizer (H2O2 산화제가 W/Ti 박막의 전기화학적 분극특성 및 CMP 성능에 미치는 영향)

  • Na, Eun-Young;Seo, Yong-Jin;Lee, Woo-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.515-520
    • /
    • 2005
  • CMP(chemical mechanical polishing) process has been attracted as an essential technology of multi-level interconnection. Also CMP process got into key process for global planarization in the chip manufacturing process. In this study, potentiodynamic polarization was carried out to investigate the influences of $H_2O_2$ concentration and metal oxide formation through the passivation on tungsten and titanium. Fortunately, the electrochemical behaviors of tungsten and titanium are similar, an one may expect. As an experimental result, electrochemical corrosion of the $5\;vol\%\;H_2O_2$ concentration of tungsten and titanium films was higher than the other concentrations. According to the analysis, the oxidation state and microstructure of surface layer were strongly influenced by different oxidizer concentration. Moreover, the oxidation kinetics and resulting chemical state of oxide layer played critical roles in determining the overall CMP performance. Therefore, we conclude that the CMP characteristics tungsten and titanium metal layer including surface roughness were strongly dependent on the amounts of hydrogen peroxide oxidizer.

The Effect of Electrolytes on Polshing Behavior in Cu ECMP (Cu ECMP 공정에서 전해액이 연마거동에 미치는 영향)

  • Kwon, Tae-Young;Kim, In-Kwon;Kim, Tae-Gon;Cho, Byung-Gwun;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.334-338
    • /
    • 2008
  • The purpose of this study is to characterize various electrolytes on electrochemical mechanical planarization (ECMP). The ECMP system was modified from conventional CMP system to measure the potentiodynamic curve and removal rate of Cu. The potentiodynamic curves were measured in static and dynamic states in investigated electrolytes using a potentiostat for the evaluation of the polishing behavior on ECMP. KOH (alkaline) and $NaNO_3$ (salt) were selected as electrolytes which have high conductivity. In static and dynamic states, the corrosion potential decreased and the corrosion current increased as a function of the electrolyte concentration. But, the electrochemical reaction was prevented by mechanical polishing effect in the dynamic state. The static etch and removal rate were measured as functions of concentration and applied voltage. When $NaNO_3$ was used, the dissolution was much faster than that of KOH. It was concluded that the removal rate was strongly depended on electrochemical dissolution. The removal rate increased up to 350 nm/min in $NaNO_3$ based electrolyte.

Improvement of Current-Voltage Characteristics for optimization Electrolyte (최적의 전해액 선정을 위한 전류-전압 특성고찰)

  • Park, Sung-Woo;Han, Sang-Jun;Lee, Young-Kyun;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.544-544
    • /
    • 2008
  • Metal-CMP 공정시 높은 압력을 가해 줌으로 인하여 금속배선의 디싱 현상과 에로젼 현상이 발생하고 다공성의 하부층에 균열이 생기는 문제점을 개선하고자, 낮은 하력에서 금속막의 광역 평탄화를 이룰 수 있는 ECMP(Electrochemical Chemical Mechanical Polishing)가 생겨나게 되었다. 본 논문에서는 다양한 전해액의 전류-전압 특성 곡선을 비교 분석하여, 패시베이션막이 형성되는 곳을 알 수 있었고, CV와 LSV 법을 통해 전기화학적인 특성을 고찰하였다.

  • PDF

Effects of Aluminum purity and surface condition for fabricate Nano-sized Porous using Anodic Oxidation (알루미늄 순도 및 표면처리가 나노기공의 형성에 미치는 영향)

  • Lee, Byoung-Wook;Lee, Jae-Hong;Jang, Suk-Won;Kim, Chang-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1573-1575
    • /
    • 2004
  • An alumina membrane with nano-sized pores was fabricated by anodic oxidation. The shape and structure of the pore on alumina membrane were changed according to the roughness of aluminum surface. The shape and structure of the nano-sized pre were investigated according to purity of aluminum substrate for the anodization process. The aluminum substrates with 99.5% and 99.999% purities were used. The aluminum substrate(99.5%) was anodized after the processes of pressing, mechanical polishing, chemical polishing, and electrochemical polishing. The nano-sized pores with the pore size of 50 - 100nm, the cell size of 20-50nm and the thickness of $10{\mu}m{\sim}45{\mu}m$ were obtained. Even though the electrochemical polishing was used for the aluminum substrate (99.999%), the same characteristics as the aluminum substrate (99.5%) was obtained. The alumina membrane prepared by anodization for 5 min using fixed voltage method shows the pore with irregular shape. The pore shape was changed to regular shape after pore widening process.

  • PDF

A Study to Improve PEMFC Performance by Using Electro Polishing and CrN Coating on Metal Bipolar Plate (금속분리판의 Electro Polishing 및 CrN 코팅을 통한 PEMFC 성능 향상을 위한 연구)

  • Hwang, Sung Tack;Cheon, Seung Ho;Song, Jun Seok;Yun, Young-Hoon;Kim, Byeong Heon;Zhang, Xia;Kim, Dae-Ung;Hyun, Deoksu;Oh, Byeong Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.65-71
    • /
    • 2014
  • As an important component of a fuel cell, the bipolar plate comprises a large proportion in the fuel cell's volume, weight and price. The bipolar plate is the most widely used; however, graphite bipolar plate is large in volume, brittle and therefore easily broken during assembling. In addition, due to its poor machinability, production costs a lot, unless mass production. Compared with the graphite bipolar plate, the metal bipolar plate has good machinability, high electric conductivity and strong mechanical strength; however, it corrodes easily and has a high contact resistance, so in order to prevent corrosion and reduce the contact resistance, the basic metal needs to be processed by use of electro polishing and coating. The water which is produced by electrochemical reactions in the fuel cell must be discharged smoothly. In this study, in order to prevent corrosion the processes of electro polishing and CrN coating were used. According to the presence or absence of these processes, the contact angles can be measured and different metal bipolar plates can be made, these plates can be used for comparing and analyzing the performance of the fuel cell.

Investigation of the Electrochemical Characteristics of Electropolished Super Austenite Stainless Steel with Seawater Temperature (전해연마한 슈퍼오스테나이트 스테인리스강의 해수온도에 따른 전기화학적 특성 연구)

  • Hyun-Kyu Hwang;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.164-174
    • /
    • 2023
  • Electropolishing technology uses an electrochemical reaction and improves surface roughness, glossiness, and corrosion resistance. In this investigation, electropolishing was performed to improve the corrosion resistance of super austenitic stainless steel. As a result of electropolishing, surface roughness (0.16 ㎛) was improved by about 76.5% compared to mechanical polishing (0.68 ㎛). In addition, the electropolished surface was smooth because the average and variance values of the depth histogram were small. Tafel analysis was performed after a potentiodynamic polarization experiment with seawater temperature, and the microstructure was compared and analyzed. The corrosion current density at 30 ℃, 60 ℃, and 90 ℃ was reduced by 0.083 ㎂/cm2, 0.296 ㎂/cm2, and 0.341 ㎂/cm2, respectively. Pitting occurred in the mechanical polished specimen at 30 ℃, but partial intergranular corrosion was observed in the electropolished specimen, and pitting occurred predominantly at both 60 ℃ and 90 ℃. In addition, the damage depths of the electropolished specimen were shallower than those of mechanical polishing at 30 ℃ and 60 ℃, but the opposite result was seen at 90 ℃.

A study on the selectivity in Acid- and Alkali-Based optimization Electrolytes for Electrochemical Mechanical (ECMP 적용을 위한 Acid-와 Alkali-Based 최적화 전해액 선정에 관한 연구)

  • Lee, Young-Kyun;Kim, Young-Min;Park, Sun-Jun;Lee, Chang-Suk;Bae, Jae-Hyun;Seo, Yong-Jin;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.484-484
    • /
    • 2009
  • 반도체 소자가 차세대 초미세 공정 기술 도입의 가속화를 통해 고속화 및 고집적화 되어 감에 따라 나노 (nano) 크기의 회로 선폭 미세화를 극복하고자 최적의 CMP (chemical mechanical polishing) 공정이 요구되어지고 있다. 최근, 금속배선공정에서 높은 전도율과 재료의 값이 싸다는 이유로 Cu를 사용하였으나, 디바이스의 구조적 특성을 유지하기 위해 높은 압력으로 인한 새로운 다공성 막(low-k)의 파괴와, 디싱과 에로젼 현상으로 인한 문제점이 발생하게 되었다. 이러한 문제점을 해결 하고자 본 논문에서는 Cu의 ECMP 적용을 위해 LSV (Linear sweep voltammetry)법을 통하여 알칼리 성문인 $NaNO_3$ 전해액과 산성성분인 $HNO_3$ 전해액의 전압 활성화에 의한 active, passive, transient, trans-passive 영역을 I-V 특성 곡선을 통해 알아보았고, 알칼리와 산성 성분의 전해액이 Cu 표면에 미치는 영향을 SEM (Scanning electron microscopy), EDS (Energy Dispersive Spectroscopy), XRD(X-ray Diffraction)를 통하여 전기화학적 특성을 비교 분석하였다.

  • PDF

Development of Corrosion Rust Removing Unit for Small Ship Propeller (소형선박용 프로펠러의 부식 녹 제거장치 개발)

  • Kim, Gui-Shik;Han, Se-Woong;Hyun, Chang-Hae
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.72-77
    • /
    • 2005
  • The materials used in a ship screw propeller are commonly made with brass. The seawater corrosion and seawater cavitation of the screw propeller reduces the propulsive performance of the ship. In screw manufacturing, the corrosion rust of the screw propeller is removed through a hand grinding method. The grinding process produces dust of the heavy metals from the brass. The dust creates a poor working environment that is harmful to the health of the workers. An automatic corrosionrust removing apparatus, using a blasting method, was developed for the improvement of screw polishing conditions and its working environment. The performance of this apparatus was investigated by surface roughness, weight loss rate, hardness, electrochemical corrosion resistance, and cavitation erosion, after removing of the corrosion rust under various blasting conditions. Two medias of alumina and emery were used in this experiment. The surface roughness and hardness of the screw were improved by this apparatus. The electrochemical corrosion potential (Ecorr) and current density (Icorr) were measured by the dynamic polarization method, using a potentiostat,under the conditions of surface polishing with grinding, blasting, wire brushing, and fine sand papering. The test results prove that the new corrosion rust-removing apparatus improves the surface performance of a screw propeller.

A study on the Electrochemical Reaction Characteristic of Cu electrode According to the $KNO_3$ electrolyte ($KNO_3$ 전해액을 이용한 Cu 전극의 전기 화학적 반응 특성 고찰)

  • Han, Sang-Jun;Park, Sung-Woo;Lee, Sung-Il;Lee, Young-Kyun;Jun, Young-Kil;Choi, Gwon-Woo;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.49-49
    • /
    • 2007
  • 최근 반도체 소자의 고집적화와 나노 (nano) 크기의 회로 선폭으로 인해 기존에 사용되었던 텅스텐이나 알루미늄 금속배선보다, 낮은 전기저항과 높은 electro-migration resistance가 필요한 Cu 금속배선이 주목받게 되었다. 하지만, Cu CMP 공정 시 높은 압력으로 인하여 low-k 유전체막의 손상과 디싱과 에로젼 현상으로 인한 문제점이 발생하게 되었다. 본 논문에서는, $KNO_3$ 전해액의 농도가 Cu 표면에 미치는 영향을 알아보기 위해 Tafel Curve와 CV (cyclic voltammograms)법을 사용하여 전기화학적 특징을 알아보았고 scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray Diffraction (XRD) 분석을 통해 금속표면을 비교 분석하였다.

  • PDF

Flatness of a SOB SOI Substrate Fabricated by Electrochemical Etch-stop (전기화학적 식각정지에 의해 제조된 SDB SOI기판의 평탄도)

  • Chung, Gwiy-Sang;Kang, Kyung-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.126-129
    • /
    • 2000
  • This paper describes on the fabrication of a SOI substrate by SDB technology and electrochemical etch-stop. The surface of the thinned SDB SOI substrate is more uniform than that of grinding or polishing by mechanical method, and this process was found to be very accurate method for SOI thickness control. During electrochemical etch-stop, leakage current versus voltage curves were measured for analysis of the open current potential (OCP) point, the passivation potential (PP) point and anodic passivation potential. The surface roughness and the controlled thickness selectivity of the fabricated a SDB SOI substrate were evaluated by using AFM and SEM, respectively.

  • PDF