• 제목/요약/키워드: electrochemical activation

검색결과 228건 처리시간 0.022초

Surface Characteristics and Biocompatibility of Hydroxyapatite Deposited Ti alloys by Electrochemical Deposition

  • Lee, Kang;Choe, Han Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.141-141
    • /
    • 2015
  • In this study, a series of hydroxyaptite (HAp) are produced on Ti dental implant using electrochemical deposition. Based on the preliminary analysis of the coating structure, composition and morphology. In vitro studies were performed with MC3T3-E1 cell to investigate the effect of biological change on different surface conditions.

  • PDF

다양한 유사체액과 인공타액에서 치과용 임플란트의 전기화학적 특성 (Electrochemical Characteristics of Dental Implant in the Various Simulated Body Fluid and Artificial Saliva)

  • 김태한;박근형;손미경;김원기;장승현;최한철
    • 한국표면공학회지
    • /
    • 제41권5호
    • /
    • pp.226-231
    • /
    • 2008
  • Titanium and its alloy have been widely used in dental implant and orthopedic prostheses. Electrochemical characteristics of dental implant in the various simulated body fluids have been researched by using electrochemical methods. Ti-6Al-4V alloy implant was used for corrosion test in 0.9% NaCl, artificial saliva and simulated body fluids. The surface morphology was observed using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The electrochemical stability was investigated using potentiosat (EG&G Co, 263A). The corrosion surface was observed using scanning electron microscopy (SEM). From the results of potentiodynamic test in various solution, the current density of implant tested in SBF and AS solution was lower than that of implant tested in 0.9% NaCl solution. From the results of passive film stability test, the variation of current density at constant 250 mV showed the consistent with time in the case of implant tested in SBF and AS solution, whereas, the current density at constant 250mV in the case of implant tested in 0.9% NaCl solution showed higher compared to SBF and AS solution as time increased. From the results of cyclic potentiodynamic test, the pitting potential and |$E_{pit}\;-\;E_{corr}$| of implant tested in SBF and AS solution were higher than those of implant tested in 0.9% NaCl solution.

Herbaceous Biomass Waste-Derived Activated Carbons for Supercapacitors

  • Han, Joah;Lee, Jin Hyung;Roh, Kwang Chul
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권2호
    • /
    • pp.157-162
    • /
    • 2018
  • In the study, herbaceous biomass waste including giant miscanthus, corn stalk, and wheat stalk were used to prepare commercially valuable activated carbons by KOH activation. The waste biomass predominantly consists of cellulose/hemicellulose and lignin, in which decomposition after carbonization and activation contributed to commercially valuable specific surface areas (>$2000m^2/g$) and specific capacitances (>120 F/g) that exceeded those of commercial activated carbon. The significant electrochemical performance of the herbaceous biomass-derived activated carbons indicated the feasibility of utilizing waste biomass to fabricate energy storage materials. Furthermore, with respect to both economic and environmental perspectives, it is advantageous to obtain activated carbon from herbaceous biomass waste given the ease of handling biomass and the low production cost of activated carbon.

활성화 및 에어로졸 공정에 의한 다공성 그래핀 볼 제조 및 슈퍼커패시터 응용 (Synthesis of Porous Graphene Balls by the Activation and Aerosol Process for Supercapacitors Application)

  • 이총민;장한권;장희동
    • 한국입자에어로졸학회지
    • /
    • 제15권4호
    • /
    • pp.183-190
    • /
    • 2019
  • Here, we introduce porous graphene balls (PGB) showing superior electrochemical properties as supercapacitor electrode materials. PGB was fabricated via activation of graphene oxides (GO) by H2O2 and aerosol spray drying in series. Effect of activation on the morphology, specific surface area, pore volume, and electrochemical properties were investigated. As-prepared PGB showed spherical morphology containing pores, which lead to the effective prevention of restacking in graphene sheets. It also exhibited a large surface area, unique porous structures, and high electrical conductivity. The electrochemical properties of the PGB as electrode materials of supercapacitor are investigated by using aqueous KOH under symmetric two-electrode system. The highest specific capacitance of PGB was 279 F/g at 0.1 A/g. In addition, the high rate capability (93.8% retention) and long-term cycling stability (92.2%) of the PGB were found due to the facilitated ion mobility between the porous graphene layers.

ALBC3 합금의 수소과전압 현상을 이용한 캐비테이션과 전기화학적 특성 (Cavitation and Electrochemical Characteristics Using Hydrogen Overpotential Method for ALBC3 Alloy)

  • 박재철;이승준;김성종
    • 한국표면공학회지
    • /
    • 제44권6호
    • /
    • pp.277-283
    • /
    • 2011
  • In this study, the cavitation test and electrochemical experiments were conducted for ALBC3(Cu-Al) alloy that has an excellent corrosion resistance and cavitation characteristic in sea water. Based on the ASTMG32 regulation, the cavitation test was performed with the cavitation and cavitation erosion tester using piezoelectric effect. The electrochemical characteristics are evaluated with potentiostatic experiments in activation polarization potential range. As a result, cavitation damage is increased proportionally to temperature and time at $30{\mu}m$ amplitude. It is appeared that acceleration period in weight loss presented over 6 hours under the cavitation environment in sea water. In addition, corrosion damages were observed at the potential range of -3.2~-1.4 V as the result of potensiostatic experiments during 12 hours in activation polarization potential range.

K2CO3 처리된 Coal Tar Pitch 활성탄 전극의 결정성 및 EDLC 성능 (Structural Characterization and EDLC-Electrode Performance of Coal-Tar-Pitch Activated Carbon Using K2CO3 Treatment)

  • 최푸름;정지철;임연수;김명수
    • 한국재료학회지
    • /
    • 제26권9호
    • /
    • pp.460-467
    • /
    • 2016
  • Activated carbons (ACs) have been used as EDLC (electric double-layer capacitor) electrode materials due to their high specific area, stability, and ecological advantages. In order to prepare ACs with high density and crystallinity, coal tar pitch (CTP) was activated by $K_2CO_3$ and the textural and electrochemical properties of the obtained ACs were investigated. Although the CTP ACs formed by $K_2CO_3$ activation had much smaller specific surface area and pore volume than did the CTP ACs formed by KOH activation, their volumetric specific capacitance (F/cc) levels as electrode materials for EDLC were comparable due to their higher density and micro-crystallinity. Structural characterization and EDLC-electrode performance were studied with different activation conditions of $CTP/K_2CO_3$ ratio, activation temperature, and activation period.

Preparation and Characterization of Carbon Nanotubes-Based Composite Electrodes for Electric Double Layer Capacitors

  • Seo, Min-Kang;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1523-1526
    • /
    • 2012
  • In this work, we prepared activated multi-walled carbon nanotubes/polyacrylonitrile (A-MWCNTs/C) composites by film casting and activation method. Electrochemical properties of the composites were investigated in terms of serving as MWCNTs-based electrode materials for electric double layer capacitors (EDLCs). As a result, the A-MWCNTs/C composites had much higher BET specific surface area, and pore volume, and lower volume ratio of micropores than those of pristine MWCNTs/PAN ones. Furthermore, some functional groups were added on the surface of the A-MWCNTs/C composites. The specific capacitance of the A-MWCNTs/C composites was more than 4.5 times that of the pristine ones at 0.1 V discharging voltage owing to the changes of the structure and surface characteristics of the MWCNTs by activation process.

Electrochemical Analysis on Flow-Accelerated Corrosion Behavior of SA106 Gr.C Steel in Alkaline Solution

  • Kim, Jun Hwan;Kim, In Sup;Chung, Han Sub
    • Corrosion Science and Technology
    • /
    • 제2권1호
    • /
    • pp.41-46
    • /
    • 2003
  • Flow-Accelerated Corrosion behavior concerning both activation and mass transfer process of SA106 Gr.C steel was studied using rotating cylinder electrode in room temperature alkaline solution by DC and AC electrochemical techniques. Passive film was tanned from pH 9.8 by step oxidation of ferrous product into hydroxyl compound. Corrosion potential shifted slightly upward with rotating velocity through the diffusion of cathodic species. Corrosion current density increased with rotating velocity in pH 6.98, while it soon saturated from 1000 rpm at above pH 9.8. On the other hand the limiting current increased with rotating speed regardless of pH values. It seems that activation process, which represents formation of passive film on the bare metal surface, controls the entire corrosion kinetics

Ion Migration in Metal Halide Perovskites

  • Nur'aini, Anafi;Lee, Seokwon;Oh, Ilwhan
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.71-77
    • /
    • 2022
  • Metal halide perovskites are promising photovoltaic materials, but they still have some issues that need to be solved. Hysteresis is a phenomenon that strongly is correlated with ion migration; thus, a fast, easy, and low-temperature method for measuring ion migration is required. Through selective blocking, ion migration can be measured separately, apart from electron migration. In this study, ion migration in metal halide perovskites was measured using a vertical device. At different temperatures, ionic activation energies were obtained for a range of perovskite compositions such as MAPbI3, FAPbI3, CsPbI3, and MAPbBr3. By comparing the measured ionic activation energies with the theoretical values, we conclude that among other possibilities, I- is the migrating ion in MAPbI3, FAPbI3, CsPbI3, and Br- is the migrating in MAPbBr3.

ZrN 및 TiN 코팅된 치과교정 용 미니나사의 표면특성과 전기화학적 거동 (Surface Characteristics and Electrochemical Behaviors of TiN and ZrN Coated Orthodontic Mini-screw)

  • 김신영;문영필;박근형;조호형;김원기;손미경;최한철
    • 한국표면공학회지
    • /
    • 제41권5호
    • /
    • pp.232-239
    • /
    • 2008
  • The dental orthodontic mini-screw requires good mechanical properties and high corrosion resistance for implantation in the bone. The purpose of this study was to investigate the electrochemical characteristics of TiN and ZrN coated orthodontic mini-screws, mini-screws were used for experiment. Ion plating was carried out for mini-screw using Ti and Zr coating materials with nitrogen gas. Ion plated surface of each specimen w as o bserved with f ield emission scanning e lectron microscopy ( FE-SEM), e nergy dispersive x-ray spectroscopy (EDX), and electrochemical tester. The surface of TiN and ZrN coated mini-screw were more smooth than that of other kinds of non-coated mini-screw due to dercrease of machined defects. The corrosion current density of the TiN and ZrN coated mini-screw decreased compared to non-coated sample. The corrosion potential of TiN and ZrN coated mini-screw were higher than that of non-coated mini-screw in 0.9% NaCl solution. The pitting corrosion resistance increased in the order of ZrN coated, TiN coated and non-coated wire. Pitting potential of ZrN coated mini-screw was the highest in the other specimens.