Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00136

Ion Migration in Metal Halide Perovskites  

Nur'aini, Anafi (Chemical Engineering, Kumoh National Institute of Technology)
Lee, Seokwon (Departments of Applied Chemistry, Kumoh National Institute of Technology)
Oh, Ilwhan (Departments of Applied Chemistry, Kumoh National Institute of Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.1, 2022 , pp. 71-77 More about this Journal
Abstract
Metal halide perovskites are promising photovoltaic materials, but they still have some issues that need to be solved. Hysteresis is a phenomenon that strongly is correlated with ion migration; thus, a fast, easy, and low-temperature method for measuring ion migration is required. Through selective blocking, ion migration can be measured separately, apart from electron migration. In this study, ion migration in metal halide perovskites was measured using a vertical device. At different temperatures, ionic activation energies were obtained for a range of perovskite compositions such as MAPbI3, FAPbI3, CsPbI3, and MAPbBr3. By comparing the measured ionic activation energies with the theoretical values, we conclude that among other possibilities, I- is the migrating ion in MAPbI3, FAPbI3, CsPbI3, and Br- is the migrating in MAPbBr3.
Keywords
Ion Migration; Activation Energy; Perovskite; Selective Blocking;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Meng, J. You, and Y. Yang, Nat. Commun., 2018, 9(1), 1-4.   DOI
2 Y. Yuan and J. Huang, Acc. Chem. Res., 2016, 49(2), 286-293.   DOI
3 W. Nie, J. C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M. A. Alam, M. Y. Sfeir, C. Katan, J. Even, S. Tretiak, J. J. Crochet, G. Gupta, and A. D. Mohite, Nat. Commun., 2016, 7(1), 1-9.
4 Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, and J. Huang, Nat. Mater., 2015, 14(2), 193-197.   DOI
5 H. S. Kim and N. G. Park, J. Phys. Chem. Lett., 2014, 5(17), 2927-2934.   DOI
6 T. Zhang, H. Chen, Y. Bai, S. Xiao, L. Zhu, C. Hu, Q. Xue, and S. Yang, Nano Energy., 2016, 26, 620-630.   DOI
7 Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, and J. Huang, Adv. Energy Mater., 2015, 5(15), 1500615.   DOI
8 D. Klotz, G. Tumen-Ulzii, C. Qin, T. Matsushima, and C. Adachi, RSC Adv., 2019, 9(57), 33436-33445.   DOI
9 T. Zhang, X. Meng, Y. Bai, S. Xiao, C. Hu, Y. Yang, H. Chen, and S. Yang, J. Mater. Chem. A., 2017, 5(3), 1103-1111.   DOI
10 W. Zhou, Y. Zhao, X. Zhou, R. Fu, Q. Li, Y. Zhao, K. Liu, D. Yu, and Q. Zhao, J. Phys. Chem. Lett., 2017, 8(17), 4122-4128.   DOI
11 L. J. Phillips, A. M. Rashed, R. E. Treharne, J. Kay, P. Yates, I. Z. Mitrovic, A. Weerakkody, S. Hall, and K. Durose, Sol. Energy Mater. Sol. Cells., 2016, 147, 327-333.   DOI
12 Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, Nat. Commun., 2014, 5(1), 1-7.
13 L. K. Ono, E. J. Juarez-Perez, and Y. Qi, ACS Appl. Mater. Interfaces., 2017, 9(36), 30197-30246.   DOI
14 Y. G. Kim, T. Y. Kim, J. H. Oh, K. S. Choi, Y. J. Kim, and S. Y. Kim, Phys. Chem. Chem. Phys., 2017, 19(8), 6257-6263.   DOI
15 S. H. Kim and D. Lee, J. Phys. Chem. C., 2019, 123(14), 9629-9633.   DOI
16 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 2009, 131(17), 6050-6051.   DOI
17 N. R. E. L. (NREL), http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. 2016.
18 H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. W. Wang, K. Wojciechowski, and W. Zhang, J. Phys. Chem. Lett., 2014, 5(9), 1511-1515.   DOI
19 T. Y. Yang, G. Gregori, N. Pellet, M. Gratzel, and J. Maier, Angew. Chemie - Int. Ed., 2015, 54(27), 7905-7910.   DOI
20 Y. C. Zhao, W. K. Zhou, X. Zhou, K. H. Liu, D. P. Yu, and Q. Zhao, Light Sci. Appl., 2017, 6(5), e16243-e16243.   DOI
21 G. Jang, H. C. Kwon, S. Ma, S. C. Yun, H. Yang, and J. Moon, Adv. Energy Mater., 2019, 9(36), 1901719.   DOI
22 G. E. Eperon, D. Bryant, J. Troughton, S. D. Stranks, M. B. Johnston, T. Watson, D. A. Worsley, and H. J. Snaith, J. Phys. Chem. Lett., 2015, 6(1), 129-138.   DOI
23 G. Y. Kim, A. Senocrate, Y. Wang, D. and Moia, J. Maier, Angew. Chem. Int. Ed., 2021, 60, 820-826.   DOI
24 Y. Nah, O. Allam, H. S. Kim, J. I. Choi, I. S. Kim. J. Byun, S. O. Kim, S. S. Jang, and D. H. Kim, ACS Nano, 2021, 15(1), 1486-1496.   DOI
25 J. W. Lee, S. G. Kim, J. M. Yang, Y. Yang, and N. G. Park, APL Mater., 2019, 7(4), 041111.   DOI
26 B. Yang, C. C. Brown, J. Huang, L. Collins, X. Sang, R. R. Unocic, S. Jesse, S. V. Kalinin, A. Belianinov, J. Jakowski, D. B. Geohegan, B. G. Sumpter, K. Xiao, and O. S. Ovchinnikova, Adv. Funct. Mater., 2017, 27(26), 1700749.   DOI
27 C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O'Regan, A. Walsh, and M. S. Islam, Nat. Commun., 2015, 6(1), 1-8.
28 J. M. Azpiroz, E. Mosconi, J. Bisquert, and F. De Angelis, Energy Environ. Sci., 2015, 8(7), 2118-2127.   DOI
29 J. Haruyama, K. Sodeyama, L. Han, and Y. Tateyama, J. Am. Chem. Soc., 2015, 137(32), 10048-10051.   DOI
30 S. R. G. Balestra, J. M. Vicent-Luna, S. Calero, S. Tao, and J. A. Anta, J. Mater. Chem. A., 2020, 8(23), 11824-11836.   DOI
31 G. E. Eperon, G. M. Paterno, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Snaith, J. Mater. Chem. A., 2015, 3(39), 19688-19695.   DOI
32 O. Almora, I. Zarazua, E. Mas-Marza, I. Mora-Sero, J. Bisquert, and G. Garcia-Belmonte, J. Phys. Chem. Lett., 2015, 6(9), 1645-1652.   DOI
33 K. H. Wang, L. C. Li, M. Shellaiah, and K. W. Sun, Sci. Rep., 2017, 7(1), 1-14.   DOI
34 S. Meloni, T. Moehl, W. Tress, M. Franckeviius, M. Saliba, Y. H. Lee, P. Gao, M. K. Nazeeruddin, S. M. Zakeeruddin, U. Rothlisberger, and M. Graetzel, Nat. Commun., 2016, 7(1), 1-9.
35 D. A. Egger, L. Kronik, and A. M. Rappe, Angew. Chem. Int. Ed., 2015, 54(42), 12437-12441.   DOI