Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.2.157

Herbaceous Biomass Waste-Derived Activated Carbons for Supercapacitors  

Han, Joah (Center of Energy Storage Materials, Korea Institute of Ceramic Engineering & Technology)
Lee, Jin Hyung (Center of Energy Storage Materials, Korea Institute of Ceramic Engineering & Technology)
Roh, Kwang Chul (Center of Energy Storage Materials, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.2, 2018 , pp. 157-162 More about this Journal
Abstract
In the study, herbaceous biomass waste including giant miscanthus, corn stalk, and wheat stalk were used to prepare commercially valuable activated carbons by KOH activation. The waste biomass predominantly consists of cellulose/hemicellulose and lignin, in which decomposition after carbonization and activation contributed to commercially valuable specific surface areas (>$2000m^2/g$) and specific capacitances (>120 F/g) that exceeded those of commercial activated carbon. The significant electrochemical performance of the herbaceous biomass-derived activated carbons indicated the feasibility of utilizing waste biomass to fabricate energy storage materials. Furthermore, with respect to both economic and environmental perspectives, it is advantageous to obtain activated carbon from herbaceous biomass waste given the ease of handling biomass and the low production cost of activated carbon.
Keywords
Herbaceous biomass; Biomass waste; Activated carbon; Energy storage material; Supercapacitor;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Chen. L, et al., J. Mater. Chem. A, 2014, 2(25), 9684-9690.   DOI
2 Basta. A, Fierro. V, El-Saied. H, Celzard. A, Bioresour. technol, 2009, 100(17), 3941-3947.   DOI
3 Wang. R, Wang. P, Yan. X, Lang. J, Peng. C, Xue. Q, ACS appl. mater. Interfaces, 2012, 4(11), 5800-5806.   DOI
4 Daifullah. A, Yakout. S, Elreefy. S, J. Hazard. Mater, 2007, 147(1-2), 633-643.   DOI
5 Hong. J, Hwang. B, Lee. J, Kim. K, J. Electrochem. Sci. Technol, 2017, 8(1), 1-6.   DOI
6 Kim. J, Chun. J, Kim. S-G, Ahn. H, Roh, K. C, J. Electrochem. Sci. Technol, 2017, 8(4), 338-343.   DOI
7 Yoo. J, Kim. Y, Lee. C-W, Yoon. H, Yoo. S, Jeong. H, J. Electrochem. Sci. Technol, 2017, 8(3), 250-256.   DOI
8 Kim. D, Rhee. K, Park. S, J. Alloys Compd, 2012, 530, 6-10.   DOI
9 Zhang. S, Li. Y, Pan. N, J. Power Sources, 2012, 206, 476-482.   DOI
10 Zou. J., et al., Bioresour. Technol, 2013, 142, 209-217.   DOI
11 Saka. C, J. Anal. Appl. Pyrolysis, 2012, 95, 21-24.   DOI
12 Kim. S-I, et al, Microporous and Mesoporous Materials, 2006, 96(1), 191-196.   DOI
13 Bo. Li, Hiroshi. S, Hailong. J, Xinbo. Z, Qiang. X, Carbon, 2010, 48, 456-463.   DOI
14 Chmiola. J, Yushin. G, Gogotsi. Y, Portet. C, Simon. P, Taberna. P. L, Science, 2006, 313(5794), 1760-1763.   DOI
15 Fan. Z, Yan. J, Wei. T, Zhi. L, Ning. G, Li. T, Wei. F, Adv. Funct. Mater, 2011, 21(12), 2366-2375.   DOI
16 Largeot. C, Portet. C, Chmiola,. J, Taberna. P-L, Gogotsi. Y, Simon. P, J. Am. Chem. Soc, 2008, 130(9), 2730-2731.   DOI
17 Rodriguez-Martinez, L. M, Omar. N., Emerging Nanotechnologies in Rechargeable Energy Storage Systems. Elsevier Science, 2017.