• Title/Summary/Keyword: electrocatalyst

Search Result 107, Processing Time 0.026 seconds

Physioelectrochemical Investigation of Electrocatalytic Oxidation of Saccharose on Conductive Polymer Modified Graphite Electrode

  • Naeemy, A.;Ehsani, A.;Jafarian, M.;Moradi, M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.88-94
    • /
    • 2015
  • In this study we investigated the electrocatalytic oxidation of saccharose on conductive polymer- Nickel oxide modified graphite electrodes based on the ability of anionic surfactants to form micelles in aqueous media. This NiO modified electrode showed higher electrocatalytic activity than Ni rode electrode in electrocatalytic oxidation of saccharose. The anodic peak currents show linear dependency with the square root of scan rate. This behavior is the characteristic of a diffusion controlled process. Under the CA regime the reaction followed a Cottrellian behavior and the diffusion coefficient of saccharose was found in agreement with the values obtained from CV measurements.

The fabrication of electrode and characterization of performance in the PEMFC (고분자 연료전지의 전극 제조 및 성능 평가)

  • Park In-Su;Cho Yonghun;Choi Baeckbeom;Jung Daesik;Cho Yoonhwan;Sung Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.227-230
    • /
    • 2005
  • There is a worldwide interest In the development and commercialization of PEMFCs for vehicular and stationary applications. The major problem in the practical use of PEMFCs is the deactivation of the Pt anode electrocatalyst by the adsorption of carbon monoxide. Therefore, intensive work has been devoted to finding electrocatalysts that are tolerant to CO in hydrogen at operating temperatures bellow $100^{\circ}C$. Also, DMFC is considered to be one of the most promising technologies for energy generation. But, the most important problem associated with the DMFC is the slow reaction rate of methanol oxidation and the second major problem is fuel crossover. So, the performance of a state-of-the-art DMFC is considerably lower than that of hydrogen-fuelled PEMFC. In this research, the preparation and characterization of electrode materials will be introduced. Also, some electrochemical techniques for the characterization of PEMFCs will be presented.

  • PDF

The development of membranes for high temperature PEMFC

  • Lee, Doo-Yeon;Sun, Hee-Young;Cho, Chung-Kun;Lee, Myung-Jin;Seung, Do-Young
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.184-184
    • /
    • 2006
  • We have succeeded in the preparation of high molecular weight polybenzimidazoles by solution polycondensation of 3,3'-diaminobenzidine tetrahydrochloride with isophthalic acid, terephthalic acid, or with their derivatives using polyphosphoric acid both as solvent and as condensing agent. Also, we modified phosphoric acid into fluoroalkyl-phosphonic acids[F-PA]. The main reasons are as follows, first of all F-PAs are stronger acids than PA and alkylphosphonic acids which should promote proton hopping and transport. In addition, F-PA has weaker adsorption onto Pt which help to prevent electrocatalyst poisoning and promote higher oxygen reduction activity. The ionic conductivity of 85%-H3PO4 doped membranes show $10^{-2}\;Scm^{-1}\;to\;3{\times}10^{-2}\;Scm^{-1}\;at\;150^{\circ}C$ MEA with 2 %-added electrolyte shows slightly higher cell voltage than the others.

  • PDF

Water Oxidation Mechanism for 3d Transition Metal Oxide Catalysts under Neutral Condition

  • Seo, Hongmin;Cho, Kang Hee;Ha, Heonjin;Park, Sunghak;Hong, Jung Sug;Jin, Kyoungsuk;Nam, Ki Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Electrochemical water splitting to produce hydrogen energy is regarded as a promising energy conversion process for its environmentally friendly nature. To improve cell efficiency, the development of efficient water oxidation catalysts is essentially demanded. For several decades, 3d transition metal oxides have been intensively investigated for their high activity, good durability and low-cost. This review covers i) recent progress on 3d transition metal oxide electrocatalysts and ii) the reaction mechanism of oxygen evolving catalysis, specifically focused on the proposed pathways for the O-O bond formation step.

Three-dimensional Nanoporous Graphene-based Materials and Their Applications (3차원 나노 다공성 그래핀의 제조와 응용)

  • Jung, Hyun;Kang, Yein
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.243-255
    • /
    • 2019
  • Graphene, a two-dimensional material with a single atomic layer, has recently become a major research focus in various applications such as electronic devices, sensors, energy storage, catalysts, and adsorbents, because of its large theoretical surface area, excellent electrical conductivity, outstanding chemical stability, and good mechanical properties. Recently, 3D nanoporous graphene structures have received tremendous attention to expand the application of 2D graphene. Here, we overview the synthesis of 3D nanoporous graphene network structure with two-dimensional graphite oxide sheets, the control of porous parameters such as specific surface area, pore volume and pore size etc, and the modification of electronic structure by heteroatom doping along with its various applications. The 3D nanoporous graphene shows superior performance in diverse applications as a promising key material. Consequently, 3D nanoporous graphene can lead the future for advanced nanotechnology.

Pyrocatechol Violet Modified Graphite Pencil Electrode for Flow Injection Amperometric Determination of Sulfide

  • Emir, Gamze;Karakaya, Serkan;Dilgin, Yusuf
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.248-256
    • /
    • 2020
  • In this study, pyrocatechol violet (Pcv) is proposed for the first time as an efficient electrocatalyst for oxidation of sulfide and flow injection analysis (FIA) of sulfide. A graphite pencil electrode (GPE) was modified with Pcv via immersion of the GPE into 0.01 M Pcv solution for 15 min. Cyclic voltammograms (CVs) demonstrated that Pcv/GPE exhibits a good electrocatalytic performance due to shift in the potential from +400 at bare GPE to +70 mV at Pcv/GPE and obtaining an enhancement in the peak current compared with the bare GPE. A linear range between 0.25 and 250 μM sulfide with a detection limit of 0.07 μM was obtained from the recorded current-time curves in Flow Injection Analysis (FIA) of sulfide. Sulfide in water samples was also successfully determined using the proposed FI amperometric methods.

Semi-Circular Potential Sweep Voltammetry: Electrochemically Quasi-Reversible System

  • Park, Kyungsoon;Hwang, Seongpil
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.379-383
    • /
    • 2020
  • The novel voltammetry using a semi-circular potential wave for quasi-reversible charge transfer system on electrode is theoretically investigated. Compared with conventional voltammetry based on linear sweep such as linear sweep voltammetry (LSV), semi-circular potential sweep voltammetry (SCV) may decrease the charging current outside the center of potential range and increase the faradaic current at the midpoint due to variable scan rate. In this paper, we investigate the system based on macroelectrode where simple 1 dimensional (1 D) diffusion system is valid with various charge transfer rate constant (k0). In order to observe the amplification at midpoint, voltammetric response with different midpoint ranging from -200 mV to 200 mV are studied. SCVs shows both the shift of peak potential and the amplification of peak current for quasi-reversible electrode reaction while only higher peak current is observed for reversible reaction. Moreover, the higher current at midpoint enable the amplification of current at low overpotential region which may assist the determination of onset potential as a figure-of-merit in electrocatalyst.

Irreversibly Adsorbed Tri-metallic PtBiPd/C Electrocatalyst for the Efficient Formic Acid Oxidation Reaction

  • Sui, Lijun;An, Wei;Rhee, Choong Kyun;Hur, Seung Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.84-91
    • /
    • 2020
  • The PtBi/C and PtBiPd/C electrocatalysts were synthesized via the irreversible adsorption of Pd and Bi ions precursors on commercial Pt/C catalysts. XRD and XPS revealed the formation of an alloy structure among Pt, Bi, and Pd atoms. The current of direct formic acid oxidation (Id) increased ~ 8 and 16 times for the PtBi/C and PtBiPd/C catalysts, respectively, than that of commercial Pt/C because of the electronic, geometric, and third body effects. In addition, the increased ratio between the current of direct formic acid oxidation (Id) and the current of indirect formic acid oxidation (Iind) for the PtBi/C and PtBiPd/C catalysts suggest that the dehydrogenation pathway is dominant with less CO formation on these catalysts.

Platinum nanocomposites and its applications: A review

  • Sharon, Madhuri;Nandgavkar, Isaac;Sharon, Maheshwar
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.129-153
    • /
    • 2017
  • Platinum is a transition metal that is very resistant to corrosion. It is used as catalyst for converting methyl alcohol to formaldehyde, as catalytic converter in cars, for hydrocracking of heavy oils, in Fuel Cell devices etc. Moreover, Platinum compounds are important ingredient for cancer chemotherapy drugs. The nano forms of Platinum due to its unique physico-chemical properties that are not found in its bulk counterpart, has been found to be of great importance in electronics, optoelectronics, enzyme immobilization etc. The stability of Platinum nanoparticles has supported its use for the development of efficient and durable proton exchange membrane Fuel Cells. The present review concentrates on the use of Platinum conjugated with various metal or compounds, to fabricate nanocomposites, to enhance the efficiency of Platinum nanoparticles. The recent advances in the synthesis methods of different Platinum-based nanocomposites and their applications in Fuel Cell, sensors, bioimaging, light emitting diode, dye sensitized solar cell, hydrogen generation and in biosystems has also been discussed.

The study of ethanol electro-oxidation using ternary electrocatalysts (삼원소 전극촉매 이용에 따른 에탄올 산화반응에 관한 연구)

  • Noh, Chang-Soo;Sohn, Jung-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.191-194
    • /
    • 2009
  • PtRu based and PtSn based ternary catalysts were prepared by a conventional impregnation method using NaBH4 as reducing agent. The alloy formation, crystalline size and chemical composition of the in-house catalysts were determined by XRD, TEM and EDX, respectively. The chemical compositions of in-house catalysts were quite similar to the nominal value and good alloy formations were also observed. Further, crystalline sizes of ternary catalysts were comparatively smaller than binary catalysts and were approximately 3.5 ~ 5.5 nm. The electrochemical measurements were carried out in the solution 1 M $H_2SO_4$ with 1 M $C_2H_5OH$ at room temperature. LSV results obtained that ternary catalysts were higher current densities and specific activities. Especially, in case of tungsten addition system, Pt5Sn4W/C have the highest specific activities values and was approximately 21.2 and 3.1 times higher than that of PtRu/C and PtSn/C electrocatalyst.

  • PDF