• Title/Summary/Keyword: electroactive polymer

Search Result 65, Processing Time 0.032 seconds

A STUDY ON PIEZOELECTRIC PROPERTIES OF PVDF AND ITS COPOLYMERS

  • Ansari, Mohd.Zahid;Cho, Chong-Du
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.584-589
    • /
    • 2007
  • Polyvinylidene fluoride (PVDF) is a type of electroactive polymer which shows significant shape change when exposed to electric field. PVDF is generally used as a film sensor in non-destructive evaluation (NDE) of materials. In this study, however, its properties relevant to film actuator are considered. Since most of the electromechanical applications that use PVDF and its copolymers as actuators use their piezoelectric properties, only the piezoelectric properties of PVDF are discussed here. These properties depend mainly on the degree of crystallinity of PVDF. Available data from recent research publications are used to simulate the response of a PVDF bimorph beam on the application of electric field, by a commercial finite element analysis package ANSYS. Finally, the factors that affect mechanical behavior of PVDF bimorph beam are discussed.

  • PDF

Thickness Characteristics and Improved Surface Adhesion of a Polypyrrole Actuator by Analysis of Polymerization Process

  • Ryu Jaewook;Jung Senghwan;Lee Seung-Ki;Kim Byungkyu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1910-1918
    • /
    • 2005
  • Characterizing electrochemical polymerization of polypyrrole film on a substrate depends on many parameters. Among them, potential difference and cumulative charges play important role. The level of potential difference affects the quality of the polypyrrole. On the contrary, cumulative charge affects the thickness of the polypyrrole. The substrate surface is adjusted physically and chemically by treating with sandblasting and the addition of thiol for surface adhesion improvement. Experimental results show that the sandblasted and thiol treated substrate provides better. adhesion than non-sandblasted and non-thiol treated substrate.

A Study on the Control of an IPMC Actuator Using an Adaptive Fuzzy Algorithm

  • Oh, Sin-Jong;Kim, Hunmo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • The ionic Polymer Metal Composite (IPMC) is one of the electroactive polymers (EAP) that was shown to have potential application as an actuator It bends by applying a low voltage current (1∼3 V) to its surfaces when containing water In this paper, the basic characteristics and the static & dynamic modeling of IPMC is discussed. In modeling and analysis, the equations of motion, which describe the total dynamics of the system, are driven. To control the position of the IPMC actuator, an adaptive fuzzy algorithm is used. IPMC is a time varying system because the some parameters vary with the passage of time. In this paper, the modeling and control of IPMC is introduced.

The First Discharge Characteristics of PAn/Li-Al Secondary Battery (PAn/Li-Al 2차전지의 초기방전특성)

  • Moon, Seong-In;Yun, Mun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.207-210
    • /
    • 1990
  • The purpose of this study is to research and develop polymer secondary battery. This paper describes the first discharge characteristics of PAn/Li-Al secondary battery. PAn was prepared in $HBF_4$ aqueous solution by galvanostatic electropolymerization and then used as cathode active material. PAn/Li-Al secondary battery was prepared in 2025 coin type. Characteristics of this battery are summarized as follows. ${\bullet}$ Open curcuit voltage and discharge end voltage was 3.5V and 2.9V, respectively. ${\bullet}$ The ratio of electricities in discharge to theoretical electricities in all undoping of PAn cathode was 56% at constant current discharge of 1mA. ${\bullet}$ The capacity density, energy density and maximum power density per weight of PAn electroactive material were 56.1Ah/kg, 168.4Wh/kg and 16.9kW/kg, respectively.

  • PDF

A study on Dynamic Characteristics of the Robot Hand Using the Segmented Binary Control (구간분할 바이너리 제어를 이용한 로봇핸드의 동특성에 관한 연구)

  • Jeong Sanghwa;Cha Kyoungrae;Kim Hyunuk;Choi Sukbong;Kim Gwangho;Park Juneho
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.144-149
    • /
    • 2005
  • In recent years, as the robot technology is developed the researches on the artificial muscle actuator that enable robot to move dextrously like biological organ become active. The widely used materials for artificial muscle are the shape memory alloy and the electroactive polymer. These actuators have the higher energy density than the electromechanical actuator such as motor. However, there are some drawbacks for actuator. SMA has the hysterical dynamic characteristics. In this paper the segmented binary control for reducing the hysteresis of SMA is proposed and the simulation of anthropomorphic robotic hand is performed using ADAMS.

  • PDF

Comparative electrochemical study of sulphonated polysulphone binded graphene oxide supercapacitor in two electrolytes

  • Mudila, Harish;Zaidi, M.G.H.;Rana, Sweta;Alam, S.
    • Carbon letters
    • /
    • v.18
    • /
    • pp.43-48
    • /
    • 2016
  • Sulphonated polysulphone (SPS) has been synthesized and subsequently applied as binder for graphene oxide (GO)-based electrodes for development of electrochemical supercapacitors. Electrochemical performance of the electrode was investigated using cyclic voltammetry in 1M Na2SO4 and 1M KOH solution. The fabricated supercapacitors gave a specific capacitance of 161.6 and 216.8 F/g with 215.4 W/kg and 450 W/kg of power density, in 1M Na2SO4 and 1M KOH solutions, respectively. This suggests that KOH is a better electrolyte than Na2SO4 for studying the electrochemical behavior of electroactive material, and also suggests SPS is a good binder for fabrication of a GO based electrode.

그라핀 전극을 이용한 유연 투명 구동기 제작 및 특성 평가

  • Park, Yun-Jae;Im, Yeong-Jin;Im, Gi-Hong;Choe, Hyeon-Gwang;Jeon, Min-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.286.2-286.2
    • /
    • 2013
  • 기존의 이온성 고분자-금속 복합체(IPMC)는 백금(Pt)전극을 이온성 전기활성 고분자(Ionic electroactive polymer)인 나피온에 무전해 도금으로 만들어졌다. 본 연구는 백금전극을 그래핀으로 대체하여 투명 이온성 고분자-그래핀 복합체(IPGC)를 제작하였다. 그래핀은 근적외선 화학기상증착법(NIR-CVD)으로 전이금속 (Cu, Ni) 위에 탄화수소 가스(CH4)를 이용하여 성장하였다. 전이 금속위에 성장된 그래핀을 나피온 양쪽면에 van der Waals 결합력을 이용하는 습식 전이공정으로 전극을 형성하였다. IPGC는 면 저항(4-point probe), 투과도(UV/Vis spectrometer) 및 라만 분광법(Micro Raman spectroscopy)의 측정으로 그래핀 전극의 특성평가를 하였고, 전계방사 주사전자현미경(Field Emisson Scanning Electron Microscope; FE-SEM)을 사용하여 IPGC의 구조적 특성을 확인하였다. 제작된 IPGC의 성능은 백금전극을 이용한 IPMC의 변위(displacement), 힘(force), 작동 주파수(Operating frequency) 분석을 통해 비교 평가하였다.

  • PDF

Electrochemistry for Redox Polymer Film of N,N'-bis(3-pyrrol-1-yl-propyl)-4,4'-bipyridinium Ion (N,N'-bis(3-pyrrol-1-yl-propyl)-4,4'-bipyridinium이온의 산화-환원 고분자 피막에 대한 전기화학)

  • Cha, Seong-Keuck
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.6-14
    • /
    • 2001
  • The monomer N,N'-bis(3-pyrrol-1-yl-propyl)-4,4'-bipyridinium$(PF_6)_2$ was electrochemically polymerized on glassy carbon electrode surface. This polymer film electrode has electroactive sites on its bipyridinium ions distributed at the polymer strands. The formal potentials of the electrodes were -0.41V and -0.81V(vs. SSCE) for each step at phosphate buffer(pH=5.70). The diffusion coefficients of the dopants ions into the polymer matrix were $1.57{\times}10^{-4}$ and $4.35{\times}10^{-5}cm^2s^{-1}$ for first and second redox couple, respectively. The rate constants of electron transfer at $V^{2+/+}$ of the first step was a $57.53s^{-1}$, which was 22 times higher than $V^{+/0}$ one having $2.63s^{-1}$ in the solution. The charge transfer resistance of the polymer film was influenced by the dopant ion of the electrolyte. Thus the resistances were 22.63, 16.81, 12.44 and $11.36k{\Omega}$ for $LiClO_4,\;NaClO_4,\;KClO_4$, and phosphate buffer, respectively. The reaction order of the electropolymerization was first order and the rate constant of the polymerization was $1.31{\times}10^{-1}s^{-1}$ as determined by EQCM method. The G.C./p-BPB type electrode doped with phosphate ions showed a stability and reproducibility in CV procedure over 20 cycles.

  • PDF

Electro-Active-Paper Actuator Made with LiCl/Cellulose Films: Effect of LiCl Content

  • Wang, Nian-Gui;Kim, Jae-Hwan;Chen, Yi;Yun, Sung-Ryul;Lee, Sun-Kon
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.624-629
    • /
    • 2006
  • The cellulose-based, Electroactive Paper (EAPap) has recently been reported as a smart material with the advantages of lightweight, dry condition, biodegradability, sustainability, large displacement output and low actuation voltage. However, it requires high humidity.. This paper introduces an EAPap made with a cellulose solution and lithium chloride (LiCl), which can be actuated in room humidity condition. The fabrication process, performance test and effect of LiCl content of the EAPap actuator are illustrated. The bending displacement of the EAPap actuators was evaluated with actuation voltage, frequency, humidity and LiCl content changes. At a LiCl/ cellulose content of 3:10, the displacement output was maximized at a room humidity condition. Even though the displacement output was less than that of a high humidity EAPap actuator, the mechanical power output was not reduced due to the increased resonance frequency, which is promising for developing EAPap actuators that are less sensitive to humidity.

Electrochemical Behavior of Poly 8-(3-Acetylimino-6-methyl 2,4-dioxopyran)-1-aminonaphthaline in Aqueous and Non Aqueous Media

  • Hathoot, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1609-1612
    • /
    • 2003
  • The electrooxidation of 8-(3-acetylimino-6-methyl 2,4-dioxopyran)-1-aminonaphthaline (AMDAN) in aqueous and non aqueous media led to the formation of polymeric films, poly (AMDAN). The monomer, undergo anodic oxidation through the formation of a monocation radical irrespective of the nature of the medium. In aqueous medium, the monocation radical undergoes, through its resonance structures, dimerisation involving tail-to-tail, head-to-tail and even head-to-head coupling. The products formed, being more easily oxidisable than the parent substance, undergo further oxidation at the same potential so that the overall oxidation involves a one-step (i.e., a single wave), two-electron process. In non-aqueous medium, the monocation radical does not undergo dimerisation through coupling reactions. Retaining its identity, monomer oxidise in two steps involving one electron in each step. The fact that the cathodic peaks corresponding to these anodic peaks are rarely observed indicates fast consumption of the electrogenerated monocation radicals and dications by follow-up chemical reactions to produce polymeric products (poly AMDAN). The electrochemical behavior of the formed polymer films was investigated in both non aqueous and aqueous media. The films prepared in non aqueous medium were found to be more electroactive than that the films prepared in aqueous medium. This is confirmed with the results in litreature which illustrate that the film prepared in aqueous solution hold water in its structure via hydrogen bonding, which causes decomposition reactions.