Browse > Article
http://dx.doi.org/10.5714/CL.2016.18.043

Comparative electrochemical study of sulphonated polysulphone binded graphene oxide supercapacitor in two electrolytes  

Mudila, Harish (Department of Chemistry, G. B. Pant University of Agriculture & Technology)
Zaidi, M.G.H. (Department of Chemistry, G. B. Pant University of Agriculture & Technology)
Rana, Sweta (Department of Chemistry, G. B. Pant University of Agriculture & Technology)
Alam, S. (Polymer Division, Defense Materials & Stores Research & Development Establishment (DMSRDE))
Publication Information
Carbon letters / v.18, no., 2016 , pp. 43-48 More about this Journal
Abstract
Sulphonated polysulphone (SPS) has been synthesized and subsequently applied as binder for graphene oxide (GO)-based electrodes for development of electrochemical supercapacitors. Electrochemical performance of the electrode was investigated using cyclic voltammetry in 1M Na2SO4 and 1M KOH solution. The fabricated supercapacitors gave a specific capacitance of 161.6 and 216.8 F/g with 215.4 W/kg and 450 W/kg of power density, in 1M Na2SO4 and 1M KOH solutions, respectively. This suggests that KOH is a better electrolyte than Na2SO4 for studying the electrochemical behavior of electroactive material, and also suggests SPS is a good binder for fabrication of a GO based electrode.
Keywords
supercapacitor; specific capacitance; sulphonated polysulphone; binder; cyclic voltammetry;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: past, present and future. Prog Mater Sci, 56, 1178 (2011). http://dx.doi.org/10.1016/j.pmatsci.2011.03.003.   DOI
2 Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 1, 107 (2012). http://dx.doi.org/10.1016/j.nanoen.2011.11.001.   DOI
3 Zhao H, Pan L, Xing S, Luo J, Xu J. Vanadium oxides-reduced graphene oxide composite for lithium-ion batteries and supercapacitors with improved electrochemical performance. J Power Sources, 222, 21 (2013). http://dx.doi.org/10.1016/j.jpowsour.2012.08.036.   DOI
4 Wan C, Chen B. Reinforcement and interphase of polymer/graphene oxide nanocomposites. J Mater Chem, 22, 3637 (2012). http://dx.doi.org/10.1039/C2JM15062J.   DOI
5 Li ZJ, Yang BC, Zhang SR, Zhao CM. Graphene oxide with improved electrical conductivity for supercapacitor electrodes. Appl Surf Sci, 258, 3726 (2012). http://dx.doi.org/10.1016/j.apsusc.2011.12.015.   DOI
6 Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett, 7, 3499 (2007). http://dx.doi.org/10.1021/nl072090c.   DOI
7 Karthika P, Rajalakshmi N, Dhathathreyan KS. Functionalized exfoliated graphene oxide as supercapacitor electrodes. Soft Nanosci Lett, 2, 59 (2012). http://dx.doi.org/10.4236/snl.2012.24011.   DOI
8 Lufrano F, Squadrito G, Patti A, Passalacqua E. Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells. J Appl Polym Sci, 77, 1250 (2000). http://dx.doi.org/10.1002/1097-4628(20000808)77:6<1250::AID-APP9>3.0.CO;2-R.   DOI
9 Chen C, Yang QH, Yang Y, Lv W, Wen Y, Hou PX, Wang M, Cheng HM. Self-assembled free-standing graphite oxide membrane. Adv Mater, 21, 3007 (2009). http://dx.doi.org/10.1002/adma.200803726.   DOI
10 Jeong HK, Jin M, Ra EJ, Sheem KY, Han GH, Arepalli S, Lee YH. Enhanced electric double layer capacitance of graphite oxide intercalated by poly(sodium 4-styrensulfonate) with high cycle stability. ACS Nano, 4, 1162 (2010). http://dx.doi.org/10.1021/nn901790f.   DOI
11 An KH, Jeon KK, Heo JK, Lim SC, Bae DJ, Lee YH. High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J Electrochem Soc, 149, A1058 (2002). http://dx.doi.org/10.1149/1.1491235.   DOI
12 Bissessur R, Liu PKY, Scully SF. Intercalation of polypyrrole into graphite oxide. Synth Met, 156, 1023 (2006). http://dx.doi.org/10.1016/j.synthmet.2006.06.024.   DOI
13 Lufrano F, Gatto I, Staiti P, Antonucci V, Passalacqua E. Sulfonated polysulfone ionomer membranes for fuel cells. Solid State Ionics, 145, 47 (2001). http://dx.doi.org/10.1016/S0167-2738(01)00912-2.   DOI
14 Mudila H, Joshi V, Rana S, Zaidi MGH, Alam S. Enhanced electrocapacitive performance and high power density of polypyrrole/graphene oxide nanocomposites prepared at reduced temperature. Carbon Lett, 15, 171 (2014). http://dx.doi.org/ 10.5714/CL.2014.15.3.171.   DOI
15 Bourdo SE, Viswanathan T. Graphite/polyaniline (gp) composites: synthesis and characterization. Carbon, 43, 2983 (2005). http://dx.doi.org/ 10.1016/j.carbon.2005.06.016.   DOI
16 Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, Cui D. Biocompatibility of graphene oxide. Nanoscale Res Lett, 6, 1 (2011). http://dx.doi.org/10.1007/s11671-010-9751-6.   DOI
17 Wei X, Wang Z, Wang J, Wang S. A novel method of surface modification to polysulfone ultrafiltration membrane by preadsorption of citric acid or sodium bisulfite. Membr Water Treat, 3, 35 (2012). http://dx.doi.org/10.12989/mwt.2012.3.1.035.   DOI
18 Naim R, Ismail AF, Saidi H, Saion E. Development of sulfonated polysulfone membranes as a material for Proton Exchange Membrane (PEM). Proceedings of Regional Symposium on Membrane Science and Technology, Johor Bharu (2004). http://eprints.utm.my/1037/.
19 Xiao P, Xiao M, Liu P, Gong K. Direct synthesis of a polyaniline-intercalated graphite oxide nanocomposite. Carbon, 38, 626 (2000). http://dx.doi.org/10.1016/S0008-6223(00)00005-1.   DOI
20 Ghosh A, Lee YH. Carbon-based electrochemical capacitors. ChemSusChem, 5, 480 (2012). http://dx.doi.org/10.1002/cssc.201100645.   DOI
21 Choi HJ, Jung SM, Seo JM, Chang DW, Dai L, Baek JB. Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy, 1, 534 (2012). http://dx.doi.org/10.1016/j.nanoen.2012.05.001.   DOI
22 Yoo HM, Heo GY, Park SJ. Effect of crystallinity on the electrochemical properties of carbon black electrodes. Carbon Lett, 12, 252 (2011). http://dx.doi.org/10.5714/CL.2011.12.4.252.   DOI