Thickness Characteristics and Improved Surface Adhesion of a Polypyrrole Actuator by Analysis of Polymerization Process

  • Ryu Jaewook (Microsystem Research Center, Korea Institute of Science and Technology) ;
  • Jung Senghwan (Korea Bio-IT foundry center) ;
  • Lee Seung-Ki (School of Electrical, Electronics and Computer Engineering, Dankook University) ;
  • Kim Byungkyu (School of Aerospace & Mechanical Engineering, Hankuk Aviation University)
  • Published : 2005.10.01

Abstract

Characterizing electrochemical polymerization of polypyrrole film on a substrate depends on many parameters. Among them, potential difference and cumulative charges play important role. The level of potential difference affects the quality of the polypyrrole. On the contrary, cumulative charge affects the thickness of the polypyrrole. The substrate surface is adjusted physically and chemically by treating with sandblasting and the addition of thiol for surface adhesion improvement. Experimental results show that the sandblasted and thiol treated substrate provides better. adhesion than non-sandblasted and non-thiol treated substrate.

Keywords

References

  1. Cheol-ho Youn, 1996, 'Electroactive Polymer Materials,' Korea Polymer Science and Technology, Vol. 7, p. 710
  2. Diaz, A. F. and Bargon, J., 1986, Electrochemical Synthesis of Conducting Polymers Handbook of Conducting Polymers Dekker, New York
  3. Edwin, W. H. J. et al., 2000a, 'Microfabricating Conjugated Polymer Actuators,' Science, Vol. 290, pp. 1540-1545 https://doi.org/10.1126/science.290.5496.1540
  4. Edwin, W. H. J. et al., 2000b, 'Microrobots for Micrometer-size Objects in Aqueous Media: Potential Tools for Single-cell Manipulation,' Science, Vol. 288, pp. 2335-2338 https://doi.org/10.1126/science.288.5475.2335
  5. Edwin, W. H. J. et al., 2001, 'Perpendicular Actuation with Individually Controlled Polymer Microactuators,' Advanced Materials, Vol. 13, pp. 76-79 https://doi.org/10.1002/1521-4095(200101)13:1<76::AID-ADMA76>3.0.CO;2-I
  6. Edwin, W. H. J. et al., 1999a, 'Polypyrrole micro actuators,' Synthetic Metals, Vol. 102, pp. 1309-1310 https://doi.org/10.1016/S0379-6779(98)01000-5
  7. Edwin, W. H. J. et al., 2002, 'The Cell Clinic : Closable Microvials for Single Cell Studies,' Biomedical Microdevices , Vol. 4, pp. 177-187 https://doi.org/10.1023/A:1016092228965
  8. Edwin, W. H. J. et aI., 1999b, 'On-chip Microelectrodes for Electrochemistry with Moveable PPy Bilayer Actuators as Working Electrodes,' Sensors and Actuators B, Vol. 56, pp. 73-78 https://doi.org/10.1016/S0925-4005(99)00159-8
  9. Elisabeth, S. and Nikolaj, G., 1999, 'Surprising Volume Change in PPy (DBS) : An Atomic Force Microscopy Study,' Advanced Materials, Vol. 11, pp. 953-957 https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<953::AID-ADMA953>3.0.CO;2-H
  10. Elisabeth, S., 1999, 'Microfabrication of PPy Microactuators and Other Conjugated Polymer Devices,' Journal of Micromechanics and Microengineering, Vol. 9, pp. 1-18 https://doi.org/10.1088/0960-1317/9/1/001
  11. Fredirik Pettersson, P., Edwin, W. H. J., Olle Inganas, 2000, IEEE of 1st Annual International Conference on Microtechonolgies in Medicine and Biology, p. 334 https://doi.org/10.1109/MMB.2000.893799
  12. Seunghak, L. et al, 2003, 'Design and Fabrication of the Locomotion Mechanism for Capsule Endoscopes Using Memory Alloys (SMA),' The Korean Society of Mechanical Engineers (KSME) A, Vol. 27, No. 11, pp. 1849-1855 https://doi.org/10.3795/KSME-A.2003.27.11.1849
  13. Shuxiang, G. et al., 1996, 'Micro Active Guide Wire Catheter System-Characteristic Evaluation, Electrical Model and Operability Evaluation of Micro Active Catheter,' in Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 3, pp. 2226-2231 https://doi.org/10.1109/ROBOT.1996.506495
  14. Shuxiang, G. et al., 1999, 'Development of a New Type of Capsule Micropump,' in Smart Structure and Materials, Proc. SPIE, Vol. 3669, pp. 322-329
  15. Wallace, G. G. et al., 2002, Conductive Electroactive Polymers, Lancaster, Technimic