• Title/Summary/Keyword: electro-osmosis

Search Result 38, Processing Time 0.021 seconds

Experimental study of electro-osmotic hydraulic conductivity changes with voltage gradients (전압경사에 따른 전기삼투 투수계수의 변화에 대한 실험적 연구)

  • Yoon, Dong-Wook;Kim, Hyun-Ki;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1002-1007
    • /
    • 2010
  • This study evaluates the electro-osmotic hydraulic conductivity for the clay specimen by applying the series of the voltage gradient simultaneously with different stress conditions. The test results shows that the shrinkage of voids corresponds to the linear decrease in the electro-osmotic seepage velocity, and the changes of electro-chemical characteristics in the specimen induces the gradual decrease of the electro-osmotic seepage velocity with the constant voltage gradient.

  • PDF

A STUDY ON CHARACTERISTICS OF EECTRO-OSMOTIC FLOWS UNDER THE LOCAL VARIATION OF THE ELECTRIC FIELD (전기장의 국소변화에 따른 전기삼투 유동 및 혼합 특성해석)

  • Heo H. S.;Jeong J. H.;Sub Y. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.27-30
    • /
    • 2005
  • In a microfluidic chips pressure driven flow or electro-osmotic flow has been usually employed to deliver bio-samples. Flow in the chips is usually slow and the mixing performance is poor. A micro-mixer with a rapid mixing is important for practical applications. In this study a newly designed and electro-osmotic driven micro-mixer is proposed. This design is comprised of a channel and a series of metal electrodes periodically attached on the side surface. In this configuration electro-osmotic flows and the stirring effects are simulated three-dimensionally using a commercial code, CFD-ACE. Focus is given the effect on the electro-osmotic flow characteristics under the local variation of the electric field.

  • PDF

Investigation of Factors Influencing Methanol Crossover in Direct Methanol Fuel Cell (직접메탄올연료전지에서 메탄올 크로스오버에 미치는 인자 연구)

  • Hyun, Min-Soo;Kim, Sang-Kyung;Lim, Seong-Yop;Lee, Byung-Rock;Peck, Dong-Hyun;Jung, Doo-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.6-10
    • /
    • 2008
  • The amount of methanol crossover was measured with changing the operating condition by using a liquid methanol concentration sensor. Appropriate operating condition was discussed in terms of methanol crossover. Mechanism of methanol crossover was classified into three items which are diffusion, convection and electro-osmosis. Contribution of each mechanism to methanol crossover and the effect of operating condition were analyzed with varying methanol concentration, pressure difference between anode and cathode, current, temperature, and stoichiometry of anode fuel. Among the three mechanisms diffusion affected mostly and electro-osmosis effect was observed only under high methanol concentration.

Evaluation on the Electro-electrodialysis for hydrogen production by thermochemical water-splitting IS process (열화학적 수소제조 IS 프로세스의 효율향상을 위한 전해-전기투석의 실험적 평가)

  • Hong, Seong-Dae;Kim, Jeong-Geun;Lee, Sang-Ho;Choi, Sang-Il;Bae, Ki-Kwang;Hwang, Gab-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.13-16
    • /
    • 2006
  • Electro-electrodialysis (EED) experiments were carried out for the HI concentration from HIx $(HI-H_2O-I_2)$ solution to improve the Hl decomposition reaction in the thermochemical water-splitting is (iodine-Sulfur) process. EED cell is composed of the collector electrode and electrolyte. Nafion 117 which was cation exchange membrane used as an electrolyte, and the activated carbon cloth used as an electrode. The HI concentration experiment was carried out using the HIx solution and molar ratio of the $I_2$ were varied from 1 to 3 mole. The cell voltages were decreased as temperature increase. And, membrane properties such as transport number of proton and electro-osmosis coefficient were decreased as temperature increase

  • PDF

Electro-Osmotic Dewatering under Electro-Osmotic Pulse Technology

  • Kim, Jitae;Lee, Jeongwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.423-433
    • /
    • 2020
  • Direct current (DC) electric fields have been used for electro-osmotic dewatering. Under DC conditions, however, the electrical contact resistance between the electrode and the dewatering material increases considerably during the process of dewatering. Such a circumstance hinders the continuation of effective electro-osmotic dewatering. To reduce this hindrance, an applied pulse electric field with periodic reversals of the electrode polarity should improve electro-osmotic dewatering. In this study, electro-osmotic dewatering under pulse conditions was experimentally investigated for electrode polarity reversals. During the dewatering process, the pulse electric field was able to reduce the hindrance caused by the DC, resulting in an increased final dewatered amount relative to that under a DC electric field. For a constant applied voltage, the reversed polarity condition, under which the electric current passing through the material was almost unchanged with time, yielded the maximum final dewatered amount. This technique can be used to enhance drainage from a water storage facility during a period of extreme drought and the seawater desalination plants using reverse osmosis in drought stricken coastal regions.

Improvement Effect and Electrical Characteristics of Soft Ground with Plastic Electrode Spacing (전극간 거리에 따른 연약지반의 지반개량 효과와 전기적 특성)

  • Byeon, Inseong;Kang, Hongsig;Sun, Seokyoun;Han, Jeonghoon;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • Soft ground stabilization is needed to construct large civil facilities on the soft clay ground. Pre-loading method, which is accelerating consolidation method, is generally used to stabilize the soft ground. However, pre-loading method is required long construction period and quantities of fill material. Therefore, electro-osmosis method is used to replace pre-loading method for stabilizing the soft ground. Electro-osmosis method is disadvantageous in constructive and economic aspects because it is needed a metallic electrode. So, in order to solve the those disadvantages, plastic electrode was developed to replace metallic electrode. Plastic electrode, which is made by using nano-technology on existing Plastic Drain Board (PDB), was used to supply the electric power. In this study, therefore, the model test was conducted to confirm the effect of improvement and electrical characteristics of soft ground by spacing of plastic electrode. The result shows that the effect of improvement of soft ground was decreased up to 45% by increasing electrode spacing and electrical characteristics on the soft ground were influenced by consolidation settlement with electrode spacing.

Electrokinetics를 이용한 김에서의 중금속 제거

  • 이현호;서성준;최관영;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.245-248
    • /
    • 1998
  • Electrokinetic tests are conducted on laver contaminated with heavy metals to investigate the efficiency of the process in removing Cd, Pb, and Zn. The tests were operated at constant current, and operating time were 0 - 24 hours. The removal efficiency in electro-osmosis with open electrodes is time-dependent. The absorbed Cd, Pb and Zn were removed 50.94-95.75%, 80.78-81.96%, and 48.10-83.83% by the process.

  • PDF

A STUDY ON CHARACTERISTICS OF Ac ELECTRO-OSMOTIC FLOWS IN THE MICROCHANNEL WITH COPLANAR ELECTRODES (마이크로 채널 내 동일 평면 전극에 교류인가로 인한 유동특성 연구)

  • Heo, H.S.;Kang, S.M.;Suh, Y.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.163-166
    • /
    • 2006
  • This paper presents numerical results of fluid flows and mixing in a microfluidic device for AC electroosmotic flow (AC-EOF) with coplanar electrodes on top and bottom walls. Differently from previous EOF a channel which attached a couple of coplanar electrodes can be utilized to mix a target liquid with a reagent. In this study we propose a method of controlling fluid flows and mixing enhancement. To obtain the flow and mixing characteristics, numerical computations are performed by using a commercial code, CFX10. It was found that the flow near the coplanar electrodes is of 3-D complex flows and vortices between the other electrodes, and as a consequence the AC-electroosmotic flow on the electrodes plays an important role in mixing the liquid.

  • PDF

Electrokinetic Remediation of Soil Contaminated with Zn, Ni and F (동전기 정화기술을 이용한 Zn, Ni, F 복합오염 토양의 정화)

  • Cho, Jung-Min;Ryu, Byung-Gon;Park, Sung-Woo;Kim, Kyeong-Jo;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.36-43
    • /
    • 2009
  • The feasibility of electrokinetic remediation was investigated in the laboratory to treat contaminated soil with Zn, Ni and F. Electro-migration and electro-osmosis are the major removal mechanisms because fluorines desorbed from soil exist as an anionic form in soil pores, and Zn and Ni exist as a cationic form. Desorption of fluorine was enhanced under the alkaline condition, but that of Zn and Ni increased under the acidic condition. Sequential pH control was effective to control the mixed wastes from contaminated soil. 2 V/cm was applied to reactor to evaluate the effect of constant voltage gradient, after two weeks, the removal efficiency of Zn, Ni and F was 20.5%, 2.5% and 57.4%, respectively. Even though the removal of Zn and Ni was very low, the pH control enhanced transport of Zn and Ni significantly. As a result, sequential pH control is a effective method to remediate mixed waste-contaminated soil.

EFFECT OF THE ZETA POTENTIAL CONTROL BY THE TRAPEZOIDAL ELECTRODES IN A MICROCHANNEL ON ENHANCEMENT MIXING-PERFORMANCE (마이크로 채널 내 사다리꼴 전극의 제타 포텐셜 변화에 따른 혼합효과 증대에 대한 수치해석적 연구)

  • Suh, Y.K.;Heo, H.S.;Kang, J.F.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.46-51
    • /
    • 2006
  • This paper presents the numerical results of fluid flow and mixing in a microfluidic device for electro-osmotic flow (EOF) with an trapezoidal electrode array on the bottom wall (ETZEA). Differently from previous EOF in a channel which only transports fluid in colloidal system. ETZEA can also be utilized to mix a target liquid with a reagent. In this study we propose a method of controlling fluid flow and mixing enhancement. To obtain the flow and mixing characteristics, numerical computations are performed by using a commercial code, CFX-10, and a self-made code LBM-D. It was found that the flow near the trapezoidal electrode in the ETZEA is of 3-D complex flows due to the zeta potential difference between the trapezoidal electrode and channel walls, and as a consequence the hetrogeneous zeta potential on the electrodes plays an important role in mixing the liquid.