• Title/Summary/Keyword: electro-optical sensor

Search Result 108, Processing Time 0.029 seconds

A SDINS Compensation Scheme Using Electro-Optical Sensor (전자-광학센서를 이용한 스트랩다운 관성항법장치의 보정기법)

  • Yim Jong-Bin;Lim You-Chol;Lyou Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.509-515
    • /
    • 2006
  • This paper presents a navigation error compensation scheme for Strap-Down Inertial Navigation System(SDINS) using electro-optical sensor. The proposed scheme uses the position or the attitude information from the sensor. For each case, Kalman filter model is derived and implemented. To show the effectiveness of the present compensation scheme, computer simulations have been carried out resulting in the boundedness of position and attitude errors.

Stabilization and Characteristics of An Electro-optical BGO Voltage Sensor (BGO광전압 센서의 안정화 및 동작특성)

  • Lee, Kyung-Shik
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1894-1899
    • /
    • 1990
  • We present an electro-optical voltage sensor. Crystalline bismuth germanate(BI4Ge3O12) used as the electro-opticla crystal exhibited linear birefringences of 1.7x10**-5 to 5.4x10**-4. And these birefringences were observed to be strongly temperature dependent. In order to improve the stability of the electro-opticlal voltage sensor, crystals (Bi4Ge3=12) were annealed and a compensation method was used. After applying this compensation method to the voltage sensor, the temperature stability, pressure stability, and vibration stability of the sensor were highly improved, Noise Equivalent Voltage of this sensor was a few mV/\ulcornerz.

  • PDF

Integrated-Optic Electric-Field Sensor Utilizing a Ti:LiNbO3 Y-fed Balanced-Bridge Mach-Zehnder Interferometric Modulator With a Segmented Dipole Antenna

  • Jung, Hongsik
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.739-745
    • /
    • 2014
  • We have demonstrated a $Ti:LiNbO_3$ electro-optic electric-field sensor utilizing a $1{\times}2$ Y-fed balanced-bridge Mach-Zehnder interferometric (YBB-MZI) modulator, which uses a 3-dB directional coupler at the output and has two complementary output waveguides. A dc switching voltage of ~25 V and an extinction ratio of ~12.5 dB are observed at a wavelength of $1.3{\mu}m$. For a 20 dBm rf input power, the minimum detectable electric fields are ~8.21, 7.24, and ~13.3 V/m, corresponding to dynamic ranges of ~10, ~12, and ~7 dB at frequencies of 10, 30, and 50 MHz respectively. The sensors exhibit almost linear response for an applied electric-field intensity from 0.29 V/m to 29.8 V/m.

Haze Removal of Electro-Optical Sensor using Super Pixel (슈퍼픽셀을 활용한 전자광학센서의 안개 제거 기법 연구)

  • Noh, Sang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.634-638
    • /
    • 2018
  • Haze is a factor that degrades the performance of various image processing algorithms, such as those for detection, tracking, and recognition using an electro-optical sensor. For robust operation of an electro-optical sensor-based unmanned system used outdoors, an algorithm capable of effectively removing haze is needed. As a haze removal method using a single electro-optical sensor, the dark channel prior using statistical properties of the electro-optical sensor is most widely known. Previous methods used a square filter in the process of obtaining a transmission using the dark channel prior. When a square filter is used, the effect of removing haze becomes smaller as the size of the filter becomes larger. When the size of the filter becomes excessively small, over-saturation occurs, and color information in the image is lost. Since the size of the filter greatly affects the performance of the algorithm, a relatively large filter is generally used, or a small filter is used so that no over-saturation occurs, depending on the image. In this paper, we propose an improved haze removal method using color image segmentation. The parameters of the color image segmentation are automatically set according to the information complexity of the image, and the over-saturation phenomenon does not occur by estimating the amount of transmission based on the parameters.

Time Delay Compensation of the Image Sensor in Electro-Optical Tracking System (전자광학추적기에서 영상센서의 시간지연 보상)

  • Ma, Jin-Suk;Kang, Myung-Sook;Kwon, Woo-Hyen;Im, Sung-Woon;Byun, Seung-Whan
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 1998
  • In this paper, we analyzed the effect of the time delay of the image sensor in the tracking loop of Electro-Optical Tracking System(EOTS). we showed that Smith predictor can greatly improve the stability and various performances of EOTS with time delay. And also, to verify the realistic validity, we executed the experiment in EOTS recently developed, and confirmed the effectiveness in EOTS.

  • PDF

Alignment method of the secondary mirror of high resolution electro-optical payload using collimator and wave front sensor (콜리메이터와 파면측정기를 이용한 고해상도 전자광학 탑재체의 제2 반사경 정렬법)

  • Jang, Hong-Sul;Jung, Dae-Jun;Youk, Young-Chun;Kim, Seong-Hui;Ko, Dai-Ho;Lee, Seung-Hoon
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.101-104
    • /
    • 2011
  • For high resolution electro-optical payload, the alignment and assembly of the secondary mirror with respect to the primary mirror is the most important step of the whole camera assembly process. For the purpose of the secondary mirror alignment, Wave front sensor and Collimator would rather be useful than the interferometer because of its small size and easiness of handling. In this paper the brief alignment procedure and method of the secondary mirror of a high resolution electro-optical camera system was introduced.

Response characteristic of over current relay using optical sensor (광센서를 이용한 과전류 보호계전의 응답특성 연구)

  • 박병석;안성준;조홍근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1364-1366
    • /
    • 1997
  • To operate electric power systems economically and stably, and to supply the electric power of good quality, it is necessary that the measured information (current, voltage, and so on) be detected and transmutted with high reliability and high effieincy. For the reason, the optical magnetic field sensor is possible to rapidly detect to over current and recover when electric power line have fault. In addition, the optical sensor have no electro magnetic distortion and no electric insulation. In this study, we designed OCR(Over Current Relay) using optical sensor. The designed OCR using optical sensor was measured characteristic and compared contentional OCR. This system have highest optical advantages and reliability.

  • PDF

Electro-optic Electric Field Sensor Utilizing Ti:LiNbO3 Symmetric Mach-Zehnder Interferometers

  • Jung, Hong-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.47-52
    • /
    • 2012
  • The use of a $Ti:LiNbO_3$ symmetric Mach-Zehnder interferometric intensity modulator with a push-pull lumped electrode and a plate-type probe antenna to measure an electric field strength is described. The modulator has a small device size of $46{\times}7{\times}1mm$ and operates at a wavelength of $1.3{\mu}m$. The output characteristic of the interferometer shows the modulation depth of 100% and 75%, and $V_{\pi}$ voltage of 6.6 V, and 6.6 V at the 200 Hz and 1 KHz, respectively. The minimum detectable electric field is ~1.84 V/m, ~3.28 V/m, and ~11.6 V/m, corresponding to a dynamic range of about ~22 dB, ~17 dB, and ~6 dB at frequencies of 500 KHz, 1 MHz and 5 MHz, respectively.

An Optical Intense 2D Electric Field Sensor Using a Single LiNO3 Crystal

  • Zhang, Yuanying;Zhang, Jiahong;Li, Yingna;Lei, Hongyi
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.183-190
    • /
    • 2022
  • Based on the linear electro-optic (EO) effect of lithium niobite (LiNbO3, LN) crystal, an intense two-dimensional (2D) electric field sensor was analyzed, fabricated and experimentally demonstrated. The linear polarized light beam transmits along the optical axis (z-axis) of the LN crystal, and the polarization direction of the polarized light is 45° to the y-axis. The sensor can detect the intensity of a 2D electric field that is perpendicular to the z-axis. Experimental results demonstrated that the minimum detectable electric field of the sensor is 10.5 kV/m. The maximum detected electric field of the sensor is larger than 178.9 kV/m. The sensitivity of the sensor is 0.444 mV/(kV·m-1). The variation of the sensitivity is within ±0.16 dB when the sensor is rotated around a z-axis from 0° to 360°. The variation of the sensor output optical power is within ±1.4 dB during temperature change from 19 ℃ to 26 ℃ in a day (from 7:00 AM to 23:00 PM) and temperature change from 0 ℃ to 40 ℃ in a controllable temperature chamber. All theoretical and experimental results revealed that the fabricated sensor provides technology for the direct detection of intense 2D electric fields.

Development of Fiber Optic BOTDA Sensor for Intrusion Detection (침입탐지를 위한 광섬유 BOTDA 센서의 개발)

  • Kwon, Il-Bum;Kim, Chi-Yeop;Choi, Man-Yong;Yu, Jae-Wang
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.163-172
    • /
    • 2001
  • Fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor was developed to be able to detect intrusion effect through several ten kilometer optical fiber. Fiber optic BOTDA sensor was constructed with 1 laser diode and 2 electro-optic modulators. The intrusion detection experiment was peformed by the strain inducing set-up installed on an optical table to simulating an intrusion effect. In the result of this experiment, the intrusion effect was well detected as the distance resolution of 3 m through the fiber length of about 4.81 km during 1.5 seconds.

  • PDF