• Title/Summary/Keyword: electro-membrane

Search Result 145, Processing Time 0.03 seconds

Application of electro-coagulation for the pretreatment of membrane separation of anaerobic digestion effluents (혐기성 소화액의 막분리를 위한 전기응집 전처리 연구)

  • Kim, Shin-Young;Chang, In-Soung;Kim, Jang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4665-4674
    • /
    • 2014
  • The aim of this study was to confirm the feasibility of the electro-coagulation process as a pre-treatment for the membrane separation of anaerobic digestion effluents to minimize membrane fouling. The reduction of membrane fouling was evaluated according to the number of electrodes (immersed surface area of electrodes), current density and contact time. In the case of the small surface area of electrodes, the increased electric field strength resulted in a soluble COD increase due to the destruction of the microbial flocs and/or cells, whereas large changes in the soluble COD were not observed in the case of the high surface area of electrodes. On the other hand, the T-P concentration decreased as a result of the precipitation of aluminum ions and phosphates. The membrane permeation flux increased and the fouling resistance (Rc+Rf) decreased with increasing electric current density. Although the particle size of the anaerobic digestion effluent increased slightly, it was not related directly to the reduced fouling phenomena. The main mechanism for the enhanced flux was attributed to the inorganic particulate produced during electrocoagulation, such as $AlPO_4$, which acted as a dynamic membrane deposited on the membrane surface.

Ion Conductivity of Membrane in Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지에서 고분자 막의 이온 전도도)

  • Hwang, Byungchan;Chung, Hoi-Bum;Lee, Moo-Seok;Lee, Dong-Hoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.593-597
    • /
    • 2016
  • The effects of relative humidity, current density and temperature on the ionic conductivity were studied in PEMFC (Proton Exchange Membrane Fuel Cell). Water contents and water flux in the electrolyte membrane largely affected ion conductivity. The water flux was modelled and simulated by only electro-osmotic drag and back-diffusion of water. Ion conductivities were measured at membrane state out of cell and measured at MEA (Membrane and Electrode Assembly) state in condition of operation. The water contents in membrane increase as relative humidity increased in PEMFC, as a results of which ion conductivity increased. Current enhanced electro-osmotic drag and back diffusion and then water contents linearly increased. Enhancement of current density results in ion conductivity. Ion conductivity of about 40% increased as the temperature increased from $50^{\circ}C$ to $80^{\circ}C$.

전기막 담수화에서의 유체역학

  • Gwak, No-Gyun
    • Journal of the KSME
    • /
    • v.57 no.10
    • /
    • pp.33-37
    • /
    • 2017
  • 이 글에서는 전기와 분리막을 이용한 전기막 담수화(electro-membrane desalination) 공정을 이해하고, 이를 개선시키기 위한 유체역학적 접근법을 소개하고자 한다.

  • PDF

Studies on Changes of the Droplets by Bubbles in Piezoelectric Inkjet Head (잉크젯 헤드내 발생한 기포에 따른 토출 변화 연구)

  • Yoo, Young-Seuck;Kim, Young-Jae;Sim, Won-Chul;Park, Chang-Sung;Park, Jung-Hoon;Kang, Pil-Joong;Joung, Jae-Woo;Oh, Yong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1544-1545
    • /
    • 2007
  • 본 논문은 피에조방식으로 구동하는 MEMS 구조의 산업용 잉크젯 헤드를 제작하여 잉크를 충진하여 토출하는 과정에서 토출이 되지 않는 원인 중 하나인 기포에 대해서 연구하였다. 기포를 직접 관찰하기 위한 방법으로 투명한 유리로 Membrane을 제작하여 기포가 발생하여 거동하는 모습을 관찰하였으며 Actuator가 구동하는 헤드내 기포를 구동 중에 관찰하기 위한 방법으로 LDV(Laser Doffler Vibrometer)를 이용하였다. 그 결과, 구동하면서 발생하는 변위의 미세한 차이를 관찰할 수 있었으며 주파수 data의 차이를 관찰함으로써 기포의 크기에 따른 토출의 양태를 구별할 수 있었다.

  • PDF

Studies on the Transport of Acetic Acid by Electrodialysis (전기투석에 의한 초산의 이동특성 연구)

  • 최동민;구윤모
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.360-366
    • /
    • 1996
  • Electrodialysis of acetic acid was studied to find out the trend of the transport of organic acids through ultrafiltration and ion exchange membranes. The net transport rate of acetic acid was determined from the electro-migration velocity relative to the electro-osmotic flow rate through the membrane. Electro-osmosis flows through ultrafiltration membranes were from the anodic side to the cathodic side in the presence of electric field. The surface of ultrafiltration membrane was measured by the electro-osmotic flow to be charged negatively. Different transport behaviors of acetic acid were found with the ultrafiltration membranes of different materials. In general, regenerated cellulose membranes (YM series) were more effective than polysulfone membranes (PM series) for the transport of acetic acid. The transport of acetic acid was affected by electric strength, distance between the electrodes, surface area of electrode, temperature, and pore size of membrane. The transport rate through the ion exchange membrane was 1.5 to 3 times of those through the ultrafiltration membranes at the constant current of 150 mA in the experimental ranges. The transport rate of acetic acid through the ion exchange membrane increased by 10% with a pulse electric field of 10 sec/hr.

  • PDF

Development of Porous Silicon Electro-osmotic Pumps for High Flow Rate Per Current Flow Delivery of Organic Solvents (단위전류당 고유량 유기용매 이송을 위한 다공성 실리콘막 전기침투 펌프의 개발)

  • Kwon, Kil-Sung;Kim, Dae-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • Two types of electro-osmotic pumps were prepared: with anodized and DRIE porous silicon. The pump performance was characterized for both types in terms of flow rate and flow rate per current using organic solvents. Both types of electro-osmotic pumps showed a better performance compared to porous glass electro-osmotic pumps. The DRIE porous silicon electro-osmotic pump especially demonstrated an excellent flow rate and flow rate per current performance. The DRIE porous silicon electro-osmotic pump is expected to help in the development of electro-osmotic pumps and micropumps in general due to the recently widespread availability of DRIE processes.

Droplet Size Distribution Effect on the Electro-Optical Properties of Emulsion Type Polymer Dispersed Liquid Crystal (에멀전 방식의 고분자 분산형 액정의 전기 광학 특성에 미치는 액적 크기 분포의 영향)

  • Yoo, Hee Sang;Oh, Nam-Seok;Yan, Jin;Kwon, Soon-Bum
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.439-445
    • /
    • 2015
  • We established the emulsion method using membrane filter with precise control of LC droplet distribution in PDLC. PDLC cells with various LC droplet size distributions such as single droplet sizes of $1.0{\mu}m$, $1.9{\mu}m$ and $3.5{\mu}m$, the mixture of two different LC droplet sizes and the mixture of three different LC droplet sizes were fabricated and the electro-optical properties of the emulsion type PDLC cells with various droplet size distribution were investigated. In the appropriate droplet size range, the PDLCs with the single droplet sizes distributions have good electro optical properties than those with the mixture of three different LC droplet sizes. In addition, the PDLC cells with the mixture of two different LC droplet sizes have the better electro optical properties than those with single droplet sizes distribution. The PDLC cell with dual droplet size distribution of $1.0+1.9{\mu}m$ shown the best electro optical properties than the PDLC cells with other size distributions. This method enabled us to find the proper LC droplet size distribution for achieving both high transmittance and contrast ratio.

Dynamic Stability of Liquid in a Spherical Tank Covered with Membrane under Vertical Harmonic Excitation

  • Chiba, Masakatsu;Murase, Ryo;Nambu, Yohsuke;Komatsu, Keiji
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.34-39
    • /
    • 2015
  • Experimental studies were conducted on the liquid sloshing characteristics in a spherical tank covered with a flexible membrane. A spherical acrylic tank with 145.2 mm in radius was used as a test tank, and it was half-filled with water. Silicon membranes with 0.2 mm thickness were used as a test membrane with plane or hemispherical types. The test tank was harmonically excited in a vertical direction by an electro-dynamic exciter. In this case, a parametric instability vibration comes up when the excitation frequency is twice the natural frequency. Parametric instability regions of natural modes were measured for three cases, i.e. liquid surface is free, covered with plane membrane and hemi-spherical membrane.