• Title/Summary/Keyword: electrical transport

Search Result 1,276, Processing Time 0.024 seconds

Innovative Differential Hall Effect Gap Sensor through Comparative Study for Precise Magnetic Levitation Transport System

  • Lee, Sang-Han;Park, Sang-Hui;Park, Se-Hong;Sohn, Yeong-Hoon;Cho, Gyu-Hyeong;Rim, Chun-Taek
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.310-319
    • /
    • 2016
  • Three types of gap sensors, a capacitive gap sensor, an eddy current gap sensor, and a Hall effect gap sensor are described and evaluated through experiments for the purpose of precise gap sensing for micrometer scale movement, and a novel type of differential hall effect gap sensor is proposed. Each gap sensor is analyzed in terms of resolution and environment dependency including temperature dependency. Furthermore, a transport system for AMOLED deposition is introduced as a typical application of gap sensors, which are recently receiving considerable attention. Based on the analyses, the proposed differential Hall effect gap sensor is found to be the most suitable gap sensor for precise gap sensing, especially for application to a transport system for AMOLED deposition. The sensor shows resolution of $0.63mV/{\mu}m$ for the overall range of the gap from 0 mm to 2.5 mm, temperature dependency of $3{\mu}m/^{\circ}C$ from $20^{\circ}C$ to $30^{\circ}C$, and a monotonic characteristic for the gap between the sensor and the target.

Assessment and Correlation of Saline Soil Characteristics using Electrical Resistivity

  • Mustapha Maliki;Fatima Zohra Hadjadj;Nadia Laredj;Hanifi Missoum
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.205-214
    • /
    • 2023
  • Soil salinity is becoming one of the most devastating environmental hazards over the years. Soil investigation involves fast, low cost and non disturbing methods to measure soil characteristics for both construction projects as well as for agricultural use. The electrical resistivity of saline soils is greatly governed by salt concentration and the presence of moisture in soil matrix. Experimental results of this investigation highlight that there is a significant relationship between the electrical resistivity of soil samples mixed with chloride solutions (NaCl, KCl, and MgCl2) at various concentrations, and soil physical properties. Correlations represented by quadratic functions were obtained between electrical resistivity and soil characteristics, namely, water content, degree of saturation and salt concentration. This research reveals that the obtained correlations between electrical resistivity, salt concentration, water content and degree of saturation are effective for predicting the characteristics of salt affected soils in practice, which constitute a governing element in the assessment of saline lands sustaining infrastructure.

Fabrication and Electrical Transport Characteristics of All-Perovskite Oxide DyMnO3/Nb-1.0 wt% Doped SrTiO3 Heterostructures

  • Wang, Wei Tian
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.333-337
    • /
    • 2020
  • Orthorhombic DyMnO3 films are fabricated epitaxially on Nb-1.0 wt%-doped SrTiO3 single crystal substrates using pulsed laser deposition technique. The structure of the deposited DyMnO3 films is studied by X-ray diffraction, and the epitaxial relationship between the film and the substrate is determined. The electrical transport properties reveal the diodelike rectifying behaviors in the all-perovskite oxide junctions over a wide temperature range (100 ~ 340 K). The forward current is exponentially related to the forward bias voltage, and the extracted ideality factors show distinct transport mechanisms in high and low positive regions. The leakage current increases with increasing reverse bias voltage, and the breakdown voltage decreases with decrease temperature, a consequence of tunneling effects because the leakage current at low temperature is larger than that at high temperature. The determined built-in potentials are 0.37 V in the low bias region, and 0.11 V in the high bias region, respectively. The results show the importance of temperature and applied bias in determining the electrical transport characteristics of all-perovskite oxide heterostructures.

Transport Loss Characteristics of a Bi-2223 Tape in External AC Magnetic Fields (외부 교류지장에 대한 Bi-2223테이프의 통전손실 특성)

  • Ryu, Kyung-Woo;Kim, Chang-Wan;Cha, Guee-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.6
    • /
    • pp.290-295
    • /
    • 2001
  • The transport loss of a Bi-2223 tape exposed to external magnetic fields was investigated. The results show that the transport loss is independent on voltage lead arrangements in case the magnetization loss is compensated. A serous increase of the transport loss due to external AC magnetic field is observed. The loss is described well by dynamic resistance loss in relatively high fields, but another mechanism than the dynamic resistance must be responsible for the increase of the loss in low fields. The transport loss is also dependent strongly on the orientation of the external fields.

  • PDF

Analysis of Electron Transport in InAlAs/InGaAs HBT by Hybride Monte Carlo Simulation (Hybrid Monte Carlo 시뮬레이션에 의한 InAlAs/InGaAs HBT의 전자전송 해석)

  • 송정근;황성범;이경락
    • Electrical & Electronic Materials
    • /
    • v.10 no.9
    • /
    • pp.922-929
    • /
    • 1997
  • As the size of semiconductor devices shrinks in the horizontal as well as vertical dimension it is difficult to estimate the transport-velocity of electron because they drift in non-equilibrium with a few scattering. In this paper HYbrid Monte Carlo simulator which employs the drift-diffusion model for hole-transport and Monte Carlo model for electron-transport in order to reduce the simulation time and increase the accuracy as well has been developed and applied to analyze the electron-transport in InAlAs/InGaAs HBT which is attractive for an ultra high speed active device in high speed optical fiber transmission systems in terms of the velocity and energy distribution as well as cutoff frequency.

  • PDF

A Study on the Control and Estimation of Gap Sensor Offset in High-Precision Magnetic Levitation Transport System (초정밀 자기부상 물류 이송장치의 제어 및 공극 센서 오프셋 추정 연구)

  • Kim, Min;Kim, Chang-Hyun;Ha, Chang-Wan;Won, Mooncheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.87-95
    • /
    • 2018
  • The high-precision magnetic levitation transport system is a transport device applying the principle of magnetic levitation. So it is preferable for manufactory process of semiconductor and display industries. In this system, the gap sensors are arranged discontinuously and turned on or off when the tray moves in the running direction. Therefore, precise gap data is important for precise control of the carrier. However, a slight error occurs in the process of installing the gap sensor. So, in this paper, we introduce the high-precision magnetic levitation transport system for OLED evaporation process. Also, we propose a strategy for stable flight control and an offset algorithm for tracking installation errors transport system. The performances of the proposed algorithm are validated through simulation.

Unusual Electrical Transport Characteristic of the SrSnO3/Nb-Doped SrTiO3 Heterostructure

  • De-Peng Wang;Rui-Feng Niu;Li-Qi Cui;Wei-Tian Wang
    • Korean Journal of Materials Research
    • /
    • v.33 no.6
    • /
    • pp.229-235
    • /
    • 2023
  • An all-perovskite oxide heterostructure composed of SrSnO3/Nb-doped SrTiO3 was fabricated using the pulsed laser deposition method. In-plane and out-of-plane structural characterization of the fabricated films were analyzed by x-ray diffraction with θ-2θ scans and φ scans. X-ray photoelectron spectroscopy measurement was performed to check the film's composition. The electrical transport characteristic of the heterostructure was determined by applying a pulsed dc bias across the interface. Unusual transport properties of the interface between the SrSnO3 and Nb-doped SrTiO3 were investigated at temperatures from 100 to 300 K. A diodelike rectifying behavior was observed in the temperature-dependent current-voltage (IV) measurements. The forward current showed the typical IV characteristics of p-n junctions or Schottky diodes, and were perfectly fitted using the thermionic emission model. Two regions with different transport mechanism were detected, and the boundary curve was expressed by ln I = -1.28V - 13. Under reverse bias, however, the temperature- dependent IV curves revealed an unusual increase in the reverse-bias current with decreasing temperature, indicating tunneling effects at the interface. The Poole-Frenkel emission was used to explain this electrical transport mechanism under the reverse voltages.

Computational Simulations of Thermoelectric Transport Properties

  • Ryu, Byungki;Oh, Min-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.273-281
    • /
    • 2016
  • This review examines computational simulations of thermoelectric properties, such as electrical conductivity, Seebeck coefficient, and thermal conductivity. With increasing computing power and the development of several efficient simulation codes for electronic structure and transport properties calculations, we can evaluate all the thermoelectric properties within the first-principles calculations with the relaxation time approximation. This review presents the basic principles of electrical and thermal transport equations and how they evaluate properties from the first-principles calculations. As a model case, this review presents results on $Bi_2Te_3$ and Si. Even though there is still an unsolved parameter such as the relaxation time, the effectiveness of the computational simulations on the transport properties will provide much help to experimental scientist researching novel thermoelectric materials.

Analysis of Electron Transport Coefficients in Binary Mixtures of TEOS Gas with Kr, Xe, He and Ne Gases for Using in Plasma Assisted Thin-film Deposition

  • Tuan, Do Anh
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.455-462
    • /
    • 2016
  • The electron transport coefficients in not only pure atoms and molecules but also in the binary gas mixtures are necessary, especially on understanding quantitatively plasma phenomena and ionized gases. Electron transport coefficients (electron drift velocity, density-normalized longitudinal diffusion coefficient, and density-normalized effective ionization coefficient) in binary mixtures of TEOS gas with buffer gases such as Kr, Xe, He, and Ne gases, therefore, was analyzed and calculated by a two-term approximation of the Boltzmann equation in the E/N range (ratio of the electric field E to the neutral number density N) of 0.1 - 1000 Td (1 Td = 10−17 V.cm2). These binary gas mixtures can be considered to use as the silicon sources in many industrial applications depending on mixture ratio and particular application of gas, especially on plasma assisted thin-film deposition.