• Title/Summary/Keyword: electrical signal

Search Result 5,895, Processing Time 0.031 seconds

A D-Band Integrated Signal Source Based on SiGe 0.18μm BiCMOS Technology

  • Jung, Seungyoon;Yun, Jongwon;Rieh, Jae-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.4
    • /
    • pp.232-238
    • /
    • 2015
  • This work describes the development of a D-band (110-170 GHz) signal source based on a SiGe BiCMOS technology. This D-band signal source consists of a V-band (50-75 GHz) oscillator, a V-band amplifier, and a D-band frequency doubler. The V-band signal from the oscillator is amplified for power boost, and then the frequency is doubled for D-band signal generation. The V-band oscillator showed an output power of 2.7 dBm at 67.3 GHz. Including a buffer stage, it had a DC power consumption of 145 mW. The peak gain of the V-band amplifier was 10.9 dB, which was achieved at 64.0 GHz and consumed 110 mW of DC power. The active frequency doubler consumed 60 mW for D-band signal generation. The integrated D-band source exhibited a measured output oscillation frequency of 133.2 GHz with an output power of 3.1 dBm and a phase noise of -107.2 dBc/Hz at 10 MHz offset. The chip size is $900{\times}1,890{\mu}m^2$, including RF and DC pads.

An Improved EEG Signal Classification Using Neural Network with the Consequence of ICA and STFT

  • Sivasankari, K.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1060-1071
    • /
    • 2014
  • Signals of the Electroencephalogram (EEG) can reflect the electrical background activity of the brain generated by the cerebral cortex nerve cells. This has been the mostly utilized signal, which helps in effective analysis of brain functions by supervised learning methods. In this paper, an approach for improving the accuracy of EEG signal classification is presented to detect epileptic seizures. Moreover, Independent Component Analysis (ICA) is incorporated as a preprocessing step and Short Time Fourier Transform (STFT) is used for denoising the signal adequately. Feature extraction of EEG signals is accomplished on the basis of three parameters namely, Standard Deviation, Correlation Dimension and Lyapunov Exponents. The Artificial Neural Network (ANN) is trained by incorporating Levenberg-Marquardt(LM) training algorithm into the backpropagation algorithm that results in high classification accuracy. Experimental results reveal that the methodology will improve the clinical service of the EEG recording and also provide better decision making in epileptic seizure detection than the existing techniques. The proposed EEG signal classification using feed forward Backpropagation Neural Network performs better than to the EEG signal classification using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier in terms of accuracy, sensitivity, and specificity.

Field-Oriented Speed Control of Induction Machine without Speed Sensor in Overall Speed Range (속도검출기가 없는 유도전동기의 광범위한 속도 영역에서의 자속 기준 속도 제어)

  • Ryu, Hyeong-Min;Ha, Jeong-Ik;Seol, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.338-344
    • /
    • 2000
  • This paper proposes a field-oriented control strategy without speed sensor in overall speed range. At low speed region including zero speed, the electrical saliency which is due to the main flux saturation is used in order to estimate an instantaneous flux position. This electrical saliency can be obtained from the difference of high frequency impedance by the high frequency signal injection. This method enables the stable operation at zero speed or stator frequency even under heavily loaded condition. However, because of the high frequency signal injection the loss and noise in motor increase and the voltage margin is reduced as the motor speed increases. Therefore, this algorithm must be supplemented with the algorithm based on the electrical model of motor, which is conventionally used in the region except the low speed. This paper proposes the combination algorithm between the high frequency signal infection method and the adaptive observer, in which the rotor flux and motor speed can be simultaneously estimated by the adaptive control theory. This combination algorithm enables the stable operation of field-oriented speed control without speed sensor in overall speed range. This is verified by experimental results.

  • PDF

Time-Varying Signal Parameter Estimation by Variable Fading Memory Kalman Filtering

  • Lee, Sang-Wook;Lim, Jun-Seok;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.3E
    • /
    • pp.47-52
    • /
    • 1998
  • This paper prolposes a VFM (Variable Fading Memory)Kalman filtering and applies it to the parameter estimation for time-varying signals. By adaptively calculating the fading memory, the proposed algorithm does not require any predetermined fading memory when estimating the time-varying signal parameter. Moreover, the proposed algorithm has faster convergence speed than fixed fading memory one in case the signal contains an impulsive outlier. The performance of parameter estimation for time-varying signal is evaluated by computer simulation for two cases, one of which is the chirp signal whose frequency varies linearly with time and the other is the chip signal with an impulsive outlier. The experimental results show that the VFM Kalman filtering estimates the parameter of the chirp signal more rapidly than the fixed fading memory one in the region of an outlier.

  • PDF

Estimation of Fault Location on a Power Line using the Time-Frequency Domain Reflectometry (절연전선 결함 위치 추정에 대한 시간-주파수 영역 반사파 계측법의 적용)

  • Doo, Seung-Ho;Kwak, Ki-Seok;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.268-275
    • /
    • 2008
  • In this paper, we introduce a new method for detecting and estimating faults on a power line using the time-frequency domain reflectometry system. The system rests upon time-frequency signal analysis and uses a chirp signal which is multiplied by Gaussian envelope. The chirp signal is used as a reference signal, and we can get the reflected signal from a fault on a wire. To detect and estimate faults, we analyze the reflected signal by Wigner time-frequency distribution function and normalized time-frequency cross correlation function. In this paper we design an optimal reference signal for power line and implement a system for estimating fault distance on a power line with the TFDR implemented by PXI equipments. This approach is verified by some experiments with HIV 2.25mm power lines.

THE EFFECT OF MASKED SIGNAL ON THE PERFORMANCE OF GNSS CODE TRACKING SYSTEM

  • Chang, Chung-Liang;Juang, Jyh-Ching
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.223-228
    • /
    • 2006
  • The main purpose of this paper is to describe the code tracking performance of a non-coherent digital delay lock loop (DLL) or coherent DLL while tracking GNSS signal in the presence of signal masking. The masking effect is usually caused by buildings that obscure the signal in either a periodic or random manner. In some cases, ideal masking is used to remove random or periodic interference. Three types of the masked signal are considered - no masking, periodic masking, and random masking of the signal input to the receiver. The mean time to lose lock (MTLL) of the code tracking loop are evaluated, and some numerical result and simulation results are reported. Finally, the steadystate tracking errors on the performance of the tracking loop in interference environment are also presented.

  • PDF

Power Quality Data Compression using Wavelet Transform (웨이브렛 변환을 이용한 전력품질 데이터 압축에 관한 연구)

  • Chung Young-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.12
    • /
    • pp.561-566
    • /
    • 2005
  • This paper introduces a compression technique for power qualify disturbance signal via discrete wavelet transform(DWT). The proposed approach is based on a previous estimation of the stationary component of power quality disturbance signal, so that it could be subtracted from the original signal in order to reduce a dynamic range of signal and generate transient events signal, which is subsequently applied to the compression technique. The compression techniques is performed through the difference signal decomposition, thresholding of wavelet coefficients, and signal reconstruction. It presents the relation between compression efficiency and threshold. It shouts that the wavelet transform leads to a power quality data compression approach with high compression efficiency, small compression error and good de-nosing effect.

Analysis of Bobbin Probe Signal in Steam Generator Tube with Bulge Defect (증기발생기 세관의 Bulge결함에 대한 보빈프로브 신호해석)

  • Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.702-704
    • /
    • 2003
  • In this paper, analysis of bobbin probe signal in steam generator tube with bulge defect on CE system 80 nuclear power plant is represented. The CE system 80 steam generator is adopted in ULJIN-4 nuclear power plant. From Maxwell's equation, the electromagnetic governing equation for eddy current problem is derived and by performing the finite element formulation the 3-dimensional finite element code with brick element is developed. For the ease of the comparison the numerical results with experimental ones, the calculated signals are adjusted by using the ASME standard 100[%] through hole signal. For analysis of the effect of variation of the bulge depth on the impedance signal 0.2[mm] and 0.4[mm] depth of bulge defect signals are calculated and analyzed. As the depth of the bulge defect is increased, the magnitude of the signal is increased, too. But the rate of the increment of the signal is less than that of the depth of defect. From the result of this paper, we can obtained the information of the effect of bulge defect on the impedance signal.

  • PDF

Signal Transmission Characteristic of PLC Coupler using Tank Circuit (Tank회로를 이용한 배전선신호 결합장치의 특성분석)

  • Kim, J.S;Kye, M.H.;Yoo, D.W.;Oh, S.C.;Kim, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.809-811
    • /
    • 1993
  • The load impedance of power lines generally varies with time, areas, and season. Also, the harmonic noises by the power electrical equipments are scattered through the power lines. The received signal level varies with the environment and is not able to detect the PLC(Power Line Carrier) signal. For this reason, it is requried for the signal transmitter to hold the received signal level uniform independently with the variation of the load impedence. In this paper, the power lines are modeled simply and a method keeping the received signal level uniform is suggested through the analysis of the signal transmission characteritics of the PLC coupler using tank circuit.

  • PDF

Experimental Evaluation of Frequency Characteristics of Gain-saturated EDFA for Suppression of Signal Fluctuation in Terrestrial Free-space Optical Communication Systems

  • Yoo Seok, Jeong;Chul Han, Kim
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.28-32
    • /
    • 2023
  • Frequency characteristics of gain-saturated erbium-doped fiber amplifier (EDFA) are experimentally evaluated to mitigate the optical signal fluctuation induced by atmospheric turbulence in terrestrial freespace optical communication systems. Here, an acousto-optic modulator (AOM) is used to emulate optical signal fluctuations induced by atmospheric turbulence. The waveform which is generated in proportion to the refractive-index structural parameters is used to drive the AOM at various periodic frequencies. Thus, the dependence of the signal fluctuation suppression on the frequency is evaluated. The experiment is conducted using a periodic frequency sweep of the AOM driving voltage waveform and signal input power variation of the amplifier. It is observed that a low periodic frequency and high input signal power effectively suppress the optical signal fluctuation. This study evaluates the experimental results from the high-pass filter and gain-saturation characteristics of the EDFA.