• Title/Summary/Keyword: electrical resistivity array

Search Result 87, Processing Time 0.044 seconds

4 Electrical Resistivity Probe for Investigating soft offshore soils (해안연약 지반 조사를 위한 4전극 전기비저항 프로브)

  • Kim, Joon-Han;Yoon, Hyung-Koo;Bae, Myeong-Ho;Jung, Soon-Hyuck;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.464-475
    • /
    • 2009
  • Electrical resistivity can be used for porosity estimation. In order to improve previously developed ERCP(Electrical Resistivity Cone Probe), 4ERP(4 Electrical Resistivity Probe), which has Wenner array at the tip of probes, has been developed. In properties of current flow Wenner array measures electrical properties of undisturbed area during penetration and relatively correct measurements are guaranteed without polarization. Furthermore, Wenner array equation can estimate electrical resistivity without extra calibration. 4ERP is developed into 2 types, penetration and fixation. Penetration type has wedge-shaped tip. Considering disturbance minimization, fixed type has plane tip. Fixed type 4ERP in consolidation cell measure electrical resistivity increment along porosity decrease, and penetration type 4ERP measured resistivity profile along the depth in chamber. Applying Archie's law, porosity profile was estimated with electrical resistivity. The tests result suggests that 4ERP can be new site investigation equipment with little disturbance.

  • PDF

Application of SP and Pole-pole Array Electrical Resistivity Surveys to the Seawater Leakage Problem of the Embankment (방조제 누수지점 탐지를 위한 SP및 단극배열 전기비저항탐사의 적용)

  • 송성호;이규상;김진호;권병두
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.417-424
    • /
    • 2000
  • We applied SP monitoring and resistivity surveys using the pole-pole electrode array to seawater leakage problems in the Youngsan estuary dam and the Eoeun embankment to estimate and detect the zone of seawater leakage. The embankment is generally affected by tidal variation and has low resistivity characteristics due to the high saturation of seawater. For this reason, SP monitoring and the pole-pole array resistivity surveys, which are relatively more effective to the conductive media, were carried out to delineate the leakage zones of sea water through the embankment. We checked out electrical conductivity (EC) and temperature variations along the inner part of Youngsan estuary dam to detect the zone of seawater leakage and found that the measured EC value agreed to that of seawater in the leakage zone and the temperature was lower than that of the vicinity of leakage zone. SP monitoring results were coincided with tidal variations at each embankment. At the leakage zones in the Youngsan estuary dam and the Eoeun embankment, SP anomalies are in the range of -60~-85 mV and -20~-50 mV, respectively, and true resistivity values obtained by 2-D inversion are 3~15 ohm-m and below 0.3 ohm-m, respectively. Both SP monitoring and the pole-pole array resistivity method are found to be quite effective for investigation of seawater leakage zones in the embankment.

  • PDF

Modified Electrical Resistivity Survey for Leakage Detection of a Waterside Concrete Barrage (콘크리트 수변구조물의 누수 탐지를 위한 변형된 전기비저항 탐사 연구)

  • Lee, Bomi;Oh, Seokhoon;Im, Eunsang
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.3
    • /
    • pp.115-124
    • /
    • 2015
  • A modified electrical resistivity survey has been suggested and applied to a leakage detection problem of concrete barrage. We suggest the modified electrical resistivity methods using electrodes floating on the water and apply line current sources instead of conventional point current sources in order to facilitate simple analysis. In addition, the study introduced the following three variations of modified electrode array: Direct potential array, Parallel potential array and Cross potential array. These arrays were tested and investigated through numerical experiment, physical model experiment and geophysical field exploration in order to verify their applicability to the water leakage detection of a concrete barrage. When water leakage occurred, all kind of array operations demonstrated distinct changes of aspects of potential difference in graphs obtained by not only the numerical and physical model experiments but also geophysical field exploration. Therefore, this modified electrode arrays of electrical resistivity survey, which has been adapted to the concrete barrage, has been found to be a useful method to detect water leakage.

FE model of electrical resistivity survey for mixed ground prediction ahead of a TBM tunnel face

  • Kang, Minkyu;Kim, Soojin;Lee, JunHo;Choi, Hangseok
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.301-310
    • /
    • 2022
  • Accurate prediction of mixed ground conditions ahead of a tunnel face is of vital importance for safe excavation using tunnel boring machines (TBMs). Previous studies have primarily focused on electrical resistivity surveys from the ground surface for geotechnical investigation. In this study, an FE (finite element) numerical model was developed to simulate electrical resistivity surveys for the prediction of risky mixed ground conditions in front of a tunnel face. The proposed FE model is validated by comparing with the apparent electrical resistivity values obtained from the analytical solution corresponding to a vertical fault on the ground surface (i.e., a simplified model). A series of parametric studies was performed with the FE model to analyze the effect of geological and sensor geometric conditions on the electrical resistivity survey. The parametric study revealed that the interface slope between two different ground formations affects the electrical resistivity measurements during TBM excavation. In addition, a large difference in electrical resistivity between two different ground formations represented the dramatic effect of the mixed ground conditions on the electrical resistivity values. The parametric studies of the electrode array showed that the proper selection of the electrode spacing and the location of the electrode array on the tunnel face of TBM is very important. Thus, it is concluded that the developed FE numerical model can successfully predict the presence of a mixed ground zone, which enables optimal management of potential risks.

Safety Inspection of Sea Dike in Reclamation Project Area Using Electrical and Electromagnetic Survey (전기, 전자탐사법을 이용한 간척개발 사업지구 내 방조제 안전점검)

  • Song, Seong-Ho;Seong, Baek-Uk;Kim, Yeong-Gyu
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.254-261
    • /
    • 2006
  • We applied electrical resistivity survey using modified pole-pole array and small-loop electromagnetic survey to delineate the zone of seawater inflow through a tide embankment. The tide embankment is generally affected by tidal variation and has low resistivity characteristic due to the high saturation of seawater. For this reason, the electrical resistivity survey using modified pole-pole array, which is relatively more effective to the conductive media, was carried out to detect the inflow zone of seawater and small-loop electromagnetic survey using multi-frequency with 300 to 20,010 Hz was conducted. As a result of both electrical resistivity survey using modified pole-pole array and small -loop electromagnetic survey, these survey methods are found to be quite effective for investigation of seawater inflow zone in the sea dike.

  • PDF

A Study on Electrical Resistivity Geophysical Surveys of the Noen Landfill Site (전기비저항 탐사를 이용한 노은매립장 침출수 분포에 관한 연구)

  • Kim, Jun-Kyoung;Hong, Sang-Pyo;Kim, Kwang-Yul;Cho, Yong-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.5
    • /
    • pp.223-230
    • /
    • 2004
  • The electrical resistivity prospecting method with dipole-dipole array were applied in order to survey 3-D structure characteristics of the Noen landfill site. For the electrical resistivity prospecting, 3 line of measurements were established parallel to the main boundary of the Noen landfill site and additional 2 lines were also established perpendicular to the existing 3 lines for the effective investigation of the landfill site. The results showed that the uppermost layer of the landfill site is believed to be stabilized generally based on the characteristics of electrical resistivity distribution. Lowest layer was partially polluted by the leachate.

Electrical resistivity tomography survey for prediction of anomaly in mechanized tunneling

  • Lee, Kang-Hyun;Park, Jin-Ho;Park, Jeongjun;Lee, In-Mo;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.93-104
    • /
    • 2019
  • Anomalies and/or fractured grounds not detected by the surface geophysical and geological survey performed during design stage may cause significant problems during tunnel excavation. Many studies on prediction methods of the ground condition ahead of the tunnel face have been conducted and applied in tunneling construction sites, such as tunnel seismic profiling and probe drilling. However, most such applications have focused on the drill and blast tunneling method. Few studies have been conducted for mechanized tunneling because of the limitation in the available space to perform prediction tests. This study aims to predict the ground condition ahead of the tunnel face in TBM tunneling by using an electrical resistivity tomography survey. It compared the characteristics of each electrode array and performed an investigation on in-situ tunnel boring machine TBM construction site environments. Numerical simulations for each electrode array were performed, to determine the proper electrode array to predict anomalies ahead of the tunnel face. The results showed that the modified dipole-dipole array is, compared to other arrays, the best for predicting the location and condition of an anomaly. As the borehole becomes longer, the measured data increase accordingly. Therefore, longer boreholes allow a more accurate prediction of the location and status of anomalies and complex grounds.

Dipole-Dipole Array Geoelectric Survey for Gracture Zone Detection (전기비저항 탐사법을 이용한 지하 천부 파쇄대 조사)

  • Kim, Geon Yeong;Lee, Jeong Mo;Jang, Tae U
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.217-224
    • /
    • 1999
  • Although faults can be found by geological surveys, the surface traces of faults are not easily discovered by traditional geological surveys due to alluvia. In and around faults and fracture zones, the electrical resistivity appears to be lower than that of the surroundings due to the content of groundwater and clay minerals. Therefore, electrical resistivity surveys are effective to search buried faults and fracture zones. The dipole-dipole array electrical resistivity surveys, which could show the two dimensional subsurface electrical resistivity structure, were carried out in two areas, Yongdang-ri, Woongsang-eup, Yangsan-si, Kyungsangnam-do and Malbang-ri, Woedong-eup, Kyungju-si, Kyungsangpook-do. The one was next to the Dongrae Fault and the other near the Ulsan Fault was close to the region in which debatable quaternary fault traces had been found recently. From each measured data set, the electrical resistivity cross-section was obtained using the inversion program the reliability of which was analyzed using analytic solutions. A low resistivity zone was found in the inverted cross-section from the Yongdang-ri area survey data, and two low resistivity zones were found in that from the Malbang-ri area survey data. They were almost vertical and were 15∼20 m wide. Accounting the shape and the very low resistivity values of those zones (<100 Ωm)in the inverted section, they were interpreted as fracture zones although they should be proven by trenching. The reliability of the interpretation might be improved by adding some more parallel resistivity survey lines and interpreting the results in 3 and/or adding other geophysical survey.

  • PDF

A STUDY ON THE ROLL-ALONG TECHNIQUE USED IN 2D ELECTRICAL RESISTIVITY SURVEYS (2차원 전기비저항 탐사에 사용되는 ROLL-ALONG 기법에 대한 고찰)

  • WonSeokHan;JongRyeolYoon
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.3
    • /
    • pp.155-164
    • /
    • 2003
  • The validity and efficiency of the roll-along technique widely used in 2-D electrical resistivity survey are analyzed in case of the dipole-dipole and the Wenner-Schlumberger arrays by numerical modelling. The shallow anomalous resistivity bodies are successfully inverted both in the dipole-dipole and in the Wenner-Schlumberger arrays because the shallow data of pseudosection are not omitted by the roll-along technique. However, the deep anomalous resistivity bodies can not be well resolved due to the skip of observed data which is more significant in the Wenner-Schlumberger array having relatively poor horizontal coverage of obtaining data. Carrying out electrical survey adopting the dipole-dipole array, the skip of data is insignificant because it is unfeasible to expand the electrodes to the maximum electrode separation coefficient($n_max$) owing to low S/N ratio. In case of the Wenner-Schlumberger array, however, because it is generally feasible to expand the electrodes $n_max$ to the owing to high S/N ratio, it is highly possible that skip of data from the roll-along technique causes significant distortion of inversion results. Therefore, adopting the Wenner-Schlumberger array having deeper median depth(Edwards, 1977) than do the dipole-dipole array on condition of the same unit electrode spacing( ($a$) ) and $n_max$, it is recommended to determine $a$ based on not $n_max$but $n_prob$free from the skip of observing data and forward electrodes with keeping overlap interval 3/4 of the survey line length in order to reduce the distortion of resistivity structure and perform resistivity survey efficiently. These results are confirmed by numerical modelling.

  • PDF

Evaluation of Microscopic Degradation of Copper and Copper Alloy by Electrical Resistivity Measurement (전기비저항 측정에 의한 구리와 구리합금의 미시적 열화평가)

  • Kim, Chung-Seok;Nahm, Seung-Hoon;Hyun, Chang-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.444-450
    • /
    • 2010
  • In the present study, the microscopic degradation of copper and copper alloy subjected to cyclic deformation has been evaluated by the electrical resistivity measurement using the DC four terminal potential method. The copper (Cu) and copper alloy (Cu-35Zn), whose stacking fault energy is much different each other, were cyclically deformed to investigate the response of the electrical resistivity to different dislocation substructures. Dislocation cell substructure was developed in the Cu, while the planar array of dislocation structure was developed in the Cu-35Zn alloy increasing dislocation density with fatigue cycles. The electrical resistivity increased rapidly in the initial stage of fatigue deformation in both materials. Moreover, after the fatigue test it increased by about 7 % for the Cu and 6.5 % for the Cu-35Zn alloy, respectively. From these consistent results, it may be concluded that the dislocation cell structure responds to the electrical resistivity more sensitively than the planar array dislocation structure evolved during cyclic fatigue.