Evaluation of Microscopic Degradation of Copper and Copper Alloy by Electrical Resistivity Measurement

전기비저항 측정에 의한 구리와 구리합금의 미시적 열화평가

  • Received : 2010.08.07
  • Accepted : 2010.10.08
  • Published : 2010.10.30

Abstract

In the present study, the microscopic degradation of copper and copper alloy subjected to cyclic deformation has been evaluated by the electrical resistivity measurement using the DC four terminal potential method. The copper (Cu) and copper alloy (Cu-35Zn), whose stacking fault energy is much different each other, were cyclically deformed to investigate the response of the electrical resistivity to different dislocation substructures. Dislocation cell substructure was developed in the Cu, while the planar array of dislocation structure was developed in the Cu-35Zn alloy increasing dislocation density with fatigue cycles. The electrical resistivity increased rapidly in the initial stage of fatigue deformation in both materials. Moreover, after the fatigue test it increased by about 7 % for the Cu and 6.5 % for the Cu-35Zn alloy, respectively. From these consistent results, it may be concluded that the dislocation cell structure responds to the electrical resistivity more sensitively than the planar array dislocation structure evolved during cyclic fatigue.

본 연구에서는 전류 4단자 전위차법을 이용한 전기비저항을 측정하여 반복피로손상을 받은 구리와 구리합금의 미시적 열화를 평가하였다. 서로 매우 다른 적층결함 에너지를 갖는 구리(Cu)와 구리합금(Cu-35Zn)에 대해 반복피로손상을 가하고 이들 재료에서 발달한 전위구조와 전기비저항 간의 관계를 연구하고자 하였다. Cu는 전위셀 하부구조를 형성하였지만, Cu-35Zn 합금은 피로사이클에 따라서 전위밀도는 증가하고 평면배열의 전위구조를 형성하였다. 전기비저항은 두 재료 모두에서 피로변형 초기 단계에서 급격하게 증가하였다. 더욱이, 피로시험 후 구리는 약 7 % 그리고 구리 합금은 약 6.5 % 변하였다. 이러한 일관적인 결과들로부터, 반복적인 피로에 의해 발달한 전위 셀구조는 평면배열의 전위구조보다도 전기비저항에 매우 민감한 것으로 판단된다.

Keywords

References

  1. Byeon, J. W. and Kwun, S. I. (2002) Evaluation of Microstructure and Ductile-Brittle Transition Temperature in Thermally Aged 2.25Cr-IMo Steel by Electrical Resistivity Measurement, Journal of the Korean Society for Nondestructive Testing, Vol. 22, No.3, pp. 284-291
  2. Eikum, A. K. and Holwech, I. (1968) Recovery in Copper after Fatigue at $78^{\circ}K$, Scripta Metallurgica, Vol. 2, pp. 605-609 https://doi.org/10.1016/0036-9748(68)90144-0
  3. Feltner, C. E. and Laird, C. (1967) Cyclic Stress-Strain Response of F.C.C. Metals and Alloys-II Dislocation Structures and Mechanisms, Acta Metallurgica, Vol. 15, pp. 1633-1653 https://doi.org/10.1016/0001-6160(67)90138-1
  4. Fukai, Y. (1968) Electrical Resistivity due to Vacancies and Impurities in Aluminum: Band Structure Effects in the Defect Scattering in Polyvalent Metals, Physics Letters A, Vol. 27, pp. 416-417 https://doi.org/10.1016/0375-9601(68)90831-1
  5. Grobstein, T. L., Sivashankaran, S., Welsch, G.,Panigrahi, N., McGervey, J. D. and Blue, J. W. (1991) Fatigue Damage Accumulation in Nickel Prior to Crack Initiation, Materials Science and Engineering: A, Vol. 138, pp. 191-203 https://doi.org/10.1016/0921-5093(91)90688-J
  6. Hummel, R. E. (1985) Electronic Properties of Materials, Springer-Verlag, New York, pp. 67-85
  7. Jongenburger, P. (1953) The Extra-Resistivity Owing to Vacancies in Copper, Physical Review, Vol. 90, pp. 710-711 https://doi.org/10.1103/PhysRev.90.710
  8. Kim, C. S., Park, I. K., Jhang, K. Y. and Kim, N. Y. (2008) Experimental Characterization of Cyclic Deformation in Copper Using Ultrasonic Nonlinearity, Journal of the Korean Society Nondestructive Testing, Vol. 28, No.4, pp. 285-291
  9. Lindgren, L. E., Domkin, K. and Hansson, S., (2008) Dislocations, Vacancies and Solute Diffusion in Physical Based Plasticity Model for AISI 316L, Mechanics of Materials, Vol. 40, pp. 907-919 https://doi.org/10.1016/j.mechmat.2008.05.005
  10. Lukas, P. and KlesniI, M. (1973) Cyclic Stress-Strain Response and Fatigue Life of Metals in Low Amplitude Region, Materials Science Engineering, Vol. 11, pp. 345-356 https://doi.org/10.1016/0025-5416(73)90125-0
  11. Madhoun, Y., Mohamed, A. and Bassim, M. N. (2003) Cyclic Stress-Strain Response and Dislocation Structures in Polycrystalline Aluminum, Materials Science and Engineering: A, Vol. 359, pp. 220-227 https://doi.org/10.1016/S0921-5093(03)00347-2
  12. Nahm, S. R., Yu, K. M. and Ryu, J. C. (2001) Evaluation Technology of Degradation of Metallic Alloy Using Electrical Resistivity, Journal of the Korean Society for Nondestructive Testing, Vol. 21, No.5, pp. 532-541
  13. Rossiter, P. L. (1987) The Electrical Resistivity of Metals and Alloys, Cambridge University Press, New York, pp. 137-260
  14. Schapink, F. W. and Jong, M. (1964) Annihilation of Vacancies at Stacking Faults in F.C.C. Metals, Acta Metallurgica, Vol. 12, pp. 755-757 https://doi.org/10.1016/0001-6160(64)90231-7
  15. Schafler, E., Zehetbauer, M, Borbely, A. and Ungar, T. (1997) Dislocation Densities and Internal Stresses in Large Strain Cold Worked Pure Iron, Materials Science Engineering A, Vol. 234-236 pp. 445-448 https://doi.org/10.1016/S0921-5093(97)00168-8
  16. Seeger, A. (1955) The Generation of Lattice Defects by Moving Dislocations, and Its Application to the Temperature Dependence of the Flow-Stress of F.C.C. Crystals, Philosophical Magazine, Vol. 46, pp. 1194 - 1217
  17. Seitz, F. (1952) On the Generation of Vacancies by Moving Dislocations, Advances in Physics, Vol. 1, pp. 43-90 https://doi.org/10.1080/00018735200101161
  18. Weidner, A., Amberger, D., Pyczak, F., Schonbauer, B., Tschegg, S. S. and Mughrabi, H. (2010) Fatigue Damage in Copper Polycrystals Subjected to Ultrahigh-Cycle Fatigue below the PSB Threshold, International Journal of Fatigue, Vol. 32, pp. 872-878 https://doi.org/10.1016/j.ijfatigue.2009.04.004