• Title/Summary/Keyword: electrical resistance

Search Result 4,949, Processing Time 0.031 seconds

The Effect of Au Addition on the Hardening Mechanism in Ag-25wt% Pd-15wt% Cu (Ag-25wt% Pd-15wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效京華特性))

  • Bea, B.J.;Lee, H.S.;Lee, K.D.
    • Journal of Technologic Dentistry
    • /
    • v.20 no.1
    • /
    • pp.37-49
    • /
    • 1998
  • The specimens used were Ag-25 Pd-15 Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electric furnace and centrifugal casting machine in Ar atmosphere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at $350{\sim}550^{\circ}C$ Age- hardening characteristics of the small Au-containing Ag-Pd-Cu dental alloys were investigated by means of hardness testing. X-ray diffraction and electron microscope observations, electrical resistance, ergy dispersed spectra and electron probe microanalysis. Principal results are as follows : Hardening occured in two stages, i.e., stage I in low temperature and stage II in high temperature regions, during continuous aging. The case of hardening in stage I was due to the formation of the $L1_0$ type face-centered tetragonal PdCu-ordered phase in the grain interior and hardening in stage I was affected by the Cu concentration. In stage II, decomposition of the ${\alpha}$ solid solution to a PdCu ordered phase($L1_0$ type) and an Ag-rich ${\alpha}2$ phase occurred and a discontinuous precipitation occurred at the grain boundary. From the electron microscope study, it was conclued that the cause of age-hardening in this alloy is the precipitation of the PdCu ordered phase, which has AuCu I type face-centered tetragonal structure. Precipetation procedure was ${\alpha}{\to}{\alpha}+{\alpha}_2+PdCu {\to}{\alpha}_1+{\alpha}_2+PdCu$ at Pd/Cu = 1.7 Ag-Pd-Cu alloy is more effective dental alloy as ageing treatment and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

STRAIN AND TEMPERATURE CHANGES DURING THE POLYMERIZATION OF AUTOPOLYMERIZING ACRYLIC RESINS

  • Ahn Hyung-Jun;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.709-734
    • /
    • 2001
  • The aims of this experiment were to investigate the strain and temperature changes simultaneously within autopolymerzing acrylic resin specimens. A computerized data acquisition system with an electrical resistance strain gauge and a thermocouple was used over time periods up to 180 minutes. The overall strain kinetics, the effects of stress relaxation and additional heat supply during the polymerization were evaluated. Stone mold replicas with an inner butt-joint rectangular cavity ($40.0{\times}25.0mm$, 5.0mm in depth) were duplicated from a brass master mold. A strain gauge (AE-11-S50N-120-EC, CAS Inc., Korea) and a thermocouple were installed within the cavity, which had been connected to a personal computer and a precision signal conditioning amplifier (DA1600 Dynamic Strain Amplifier, CAS Inc., Korea) so that real-time recordings of both polymerization-induced strain and temperature changes were performed. After each of fresh resin mixture was poured into the mold replica, data recording was done up to 180 minutes with three-second interval. Each of two poly(methyl methacrylate) products (Duralay, Vertex) and a vinyl ethyl methacrylate product (Snap) was examined repeatedly ten times. Additionally, removal procedures were done after 15, 30 and 60 minutes from the start of mixing to evaluate the effect of stress relaxation after deflasking. Six specimens for each of nine conditions were examined. After removal from the mold, the specimen continued bench-curing up to 180 minutes. Using a waterbath (Hanau Junior Curing Unit, Model No.76-0, Teledyne Hanau, New York, U.S.A.) with its temperature control maintained at $50^{\circ}C$, heat-soaking procedures with two different durations (15 and 45 minutes) were done to evaluate the effect of additional heat supply on the strain and temperature changes within the specimen during the polymerization. Five specimens for each of six conditions were examined. Within the parameters of this study the following results were drawn: 1. The mean shrinkage strains reached $-3095{\mu}{\epsilon},\;-1796{\mu}{\epsilon}$ and $-2959{\mu}{\epsilon}$ for Duralay, Snap and Vertex, respectively. The mean maximum temperature rise reached $56.7^{\circ}C,\;41.3^{\circ}C$ and $56.1^{\circ}C$ for Duralay, Snap, and Vertex, respectively. A vinyl ethyl methacrylate product (Snap) showed significantly less polymerization shrinkage strain (p<0.01) and significantly lower maximum temperature rise (p<0.01) than the other two poly(methyl methacrylate) products (Duralay, Vertex). 2. Mean maximum shrinkage rate for each resin was calculated to $-31.8{\mu}{\epsilon}/sec,\;-15.9{\mu}{\epsilon}/sec$ and $-31.8{\mu}{\epsilon}/sec$ for Duralay, Snap and Vertex, respectively. Snap showed significantly lower maximum shrinkage rate than Duralay and Vertex (p<0.01). 3. From the second experiment, some expansion was observed immediately after removal of specimen from the mold, and the amount of expansion increased as the removal time was delayed. For each removal time, Snap showed significantly less strain changes than the other two poly(methyl methacrylate) products (p<0.05). 4. During the external heat supply for the resins, higher maximum temperature rises were found. Meanwhile, the maximum shrinkage rates were not different from those of room temperature polymerizations. 5. From the third experiment, the external heat supply for the resins during polymerization could temporarily decrease or even reverse shrinkage strains of each material. But, shrinkage re-occurred in the linear nature after completion of heat supply. 6. Linear thermal expansion coefficients obtained from the end of heat supply continuing for an additional 5 minutes, showed that Snap exhibited significantly lower values than the other two poly(methyl methacrylate) products (p<0.01). Moreover, little difference was found between the mean linear thermal expansion coefficients obtained from two different heating durations (p>0.05).

  • PDF

The Changes of Occludin in Tight Junction of Blood-Brain Barrier by ROS (치밀이음부 구조단백질인 Occludin에 대한 활성산소종의 영향)

  • Lee, Hee-Sang;Kim, Dae-Jin;Sohn, Dong-Suep;Jeong, Bong-Su;Choi, Hyung-Taek;Sim, Kyu-Min;Lee, Keum-Jeong;Cho, Hye-Jin;Kim, Suk-Joong;Lee, Jong-Chan;Jeong, Yoon-Hee;Kim, Sung-Su;Lee, Won-Bok
    • Applied Microscopy
    • /
    • v.34 no.4
    • /
    • pp.231-239
    • /
    • 2004
  • Cerebral microvessel endothelial cells that form blood-brain barrier (BBB) have tight junction for maintaining brain homeostasis. Occludin, one of tight junction protein, is crucial for BBB function. $H_2O_2$ induced occludin changes and effects in bovine brain BBB endothelial cells were examined in this study. The decrease of transendothelial electrical resistance (TEER) by $H_2O_2$ was due to disruption of occludin localization. Cytotoxicity test revealed that $H_2O_2$ did not cause cell death below 1 mM $H_2O_2$ within 4 hr. $H_2O_2$ caused intermittent disruption and loss of occludin at tight junctions and occludin disappeared with dose dependent manner from tight junction in confocal laser microscopy. But Western blot revealed that the total amounts of occludin increased by $H_2O_2$ administration. Transmission electron microscopy revealed that the ultrastructure of tight junction was not changed by $H_2O_2$. These data suggest that functional disruption of BBB by $H_2O_2$ was due to the localized loss of occludin in tight junction, but the expression of occludin increased in order to compensate the disrupted function in BBB.

A Study on the Degree of Need of Human Structure and Function Knowledge in Clinical Nurses (기초간호자연과학의 인체구조와 기능 내용별 필요도에 대한 연구)

  • Choe, Myoung-Ae;Byun, Young-Soon;Seo, Young-Sook;Hwang, Ae-Ran;Kim, Hee-Seung;Hong, Hae-Sook;Park, Mi-Jung;Choi, Smi;Lee, Kyung-Sook;Seo, Wha-Sook;Shin, Gi-Soo
    • Journal of Korean Biological Nursing Science
    • /
    • v.1 no.1
    • /
    • pp.1-24
    • /
    • 1999
  • The purpose of this study was to define the content of requisite human structure and function knowledge needed for clinical knowledge of nursing practice. Subjects of human structure and function were divided into 10 units, and each unit was further divided into 21 subunits, resulting in a total of 90 items. Contents of knowledge of human structure and function were constructed from syllabus of basic nursing subjects in 4 college of nursing, and textbooks published by nurse scholars prepared with basic nursing sciences. The degree of need of 90 items was measured with a 4 point scale. The subjects of this study were college graduated 136 nurses from seven university hospitals in Seoul and three university hospitals located in Chonnam Province, Kyungbook Province, and Inchon. They have been working at internal medicine ward, surgical ward, intensive care unit, obstetrics and gynecology ward, pediatrics ward, opthalmology ward, ear, nose, and throat ward, emergency room, rehabilitation ward, cancer ward, hospice ward, and their working period was mostly under 5 years. The results were as follows: 1. The highest scored items of human structure and function knowledge necessary for nursing practice were electrolyte balance, blood clotting mechanism and anticoagulation mechanism, hematopoietic function, body fluid balance, function of plasma, and anatomical terminology in the order of importance. The lowest scored items of human structure and function knowledge necessary for nursing practice was sexual factors of genetic mutation. 2. The highest order of need according to unit was membrane transport in the living unit, anatomical terminology in movement and exercise unit, mechanism of hormone function in regulation and integration unit, component and function of blood in oxygenation function unit, structure and function of digestive system in digestive and energy metabolism unit, temperature regulation in temperature regulation unit electrolyte balance in body fluid and electrolyte unit, concept of immunity in body resistance unit, and genetics terminology in genetics unit. The highest order of importance according to subunit was membrane transportation in cell subunit, classification of tissues in tissue unit, function of skin and skin in skin subunit, anatomical derivatives of the skeleton subunit, classification of joints in joint subunit, an effect of exercise on muscles in muscle subunit, function of brain in nervous system subunit, special sense in sensory subunit mechanism of hormone function in endocrine subunit, structure and function of female reproductive system in reproductive system unit, structure and function of blood in blood unit, structure of heart, electrical and mechanical function in cardiovascular system unit, structure of respiratory system in respiratory system subunit, structure and function of digestive system in digestive system subunit, hormonal regulation of metabolism in nutrition and metabolism subunit, function of kidney in urologic system subunit, electolyte balance in body fluid, electolyte and acid-base balance subunit. 3. The common content of human structure and function knowledge need for all clinical areas in nursing was structure and function of blood, hematopoietic function, function of plasm, coagulation mechanism and anticoagulation mechanism, body fluid, electrolyte balance, and acid-base balance. However, the degree of need of each human structure and function knowledge was different depending on clinical areas. 4. Significant differences in human structure and function knowledge necessary for nursing practice such as skin and derivatives of the skin, growth and development of bone, classification of joint, classification of muscle, structure of muscle, function of muscle, function of spinal cord, peripheral nerve, structure and function of pancrease, component and function of blood, function of plasma, structure and function of blood, hemodynamics, respiratory dynamics, gas transport, regulation of respiration, chemical digestion of foods, absorption of foods, characteristics of nutrients, metabolism and hormonal regulation, body energy balance were demonstrated according to the duration of work. 5. Significant differences in human structure and function knowledge necessary for nursing practice such as classification of tissue, classification of muscles, function of muscles, muscle metabolism, classification of skeletal muscles, classification of nervous system, neurotransmitters, mechanism of hormone function, pituitary and pituitary hormone, structure and function of male reproductive organ, structure and function of female reproductive organ, component and function of blood, function of plasma, coagulation mechanism and anticoagulation mechanism, gas exchange, gas transport, regulation of respiration, characteristics of nutrients, energy balance, function of kidney, concept of immunity, classification and function of immunity were shown according to the work area. Based on these findings, all the 90 items constructed by Korean Academic Society of Basic Nursing Science should be included as contents of human structure and function knowledge.

  • PDF

The Effect of Au Addition on the Hardening Mechanism in Ag-30wt%Pd-10wt%Cu Alloy (Ag-30wt% Pd-10wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效硬化特性))

  • Lee, K.D.;Nam, S.Y.
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.27-41
    • /
    • 1999
  • The Ag-Pd-Cu alloys containing a small amount of Au is commonly used for dental purposes, because this alloy cheaper than Au-base alloys for clinical use. However, the most important characteristic of this alloy is age-hardenability, which is not exhibited by other Ag-base dental alloys. The specimens used were Ag-30Pd-10Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electric furnace and centrifugal casting machine in Ar atmosphere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at 350-$550^{\circ}C$ Age-hardening characteristic of the small Au-containing Ag-Pd-Cu dental alloys were investigated by means of hardness testing, X-ray diffraction and electron microscope observations, electrical resistance, differential scanning calorimetric, energy dispersed spectra and electron probe microanalysis. Principal results are as follows ; Maximum hardening occured in two co-phases of ${\alpha}_2$ + PdCu In stage II, decomposition of the $\alpha$ solid solution to a PdCu ordered phase($L1_o$ type) and an Ag-rich ${\alpha}_2$ phase occurred and a discontinuous precipitation occurred at the grain boundary. From the electron microscope study, it was concluded that the cause of age-hardening in this alloy is the precipitation of the PdCu redered phase, which has AuCu I type face-centered tetragonal structure. Precipitation procedure was ${\alpha}{\to}{\alpha}_1+PdCu{\to}{\alpha}_2+PdCu$ at Pd/Cu = 3 Pd element of Ag-Pd-Cu alloy is more effective dental alloy on anti-corrosion and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

The Effect of Au Addition on the Hardening Mechanism in Ag-20wt% Pd-20wt% Cu (Ag-20wt% Pd-20wt% Cu 3원합금(元合金) 및 Au첨가합금(添加合金)의 시효경화특성(時效硬化特性))

  • Park, M.H.;Bae, B.J.;Lee, H.S.;Lee, K.D.
    • Journal of Technologic Dentistry
    • /
    • v.19 no.1
    • /
    • pp.21-35
    • /
    • 1997
  • The Ag-Pd-Cu alloys containing a small amount of Au is commonly used for dental purposes, because this alloy is cheaper than Au-base alloys for clinical use. However, the most important characteristic of this alloy is age-hardenability, which is not exhibited by other Ag-base dental alloys. The specimens used were Ag-20Pd-20Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electic furace and centrifugal casting machine in Ar atmoshpere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at $350{\sim}550^{\circ}C$ Age-hardening characteristics of the small Au-containing Ag-pPd-Cu dental alloys were investigated by means of hardness testing, X-ray diffraction and electron microscope observations, electrical resistance, differential scanning calorimetric, emergy dispersed spectra and electron probe microanalysis. Principal results are as follows : Hardening occured in two stages, I. e., stage I in low temperature and stage II in high temperature regions, during continuous aging. The case of hardening in stage I was due to the formation of the Llo type face centered tetragonal PdCu-ordered phase in the grain interior and hardening in stage I was affedted by the Cu concentration. In stage II, decomposition of the $\alpha$ solid solution to a PdCu ordered phase(L1o type) and an Agrich ${\alpha}2$ phase occurred and a discontiunous precipitation occurred at the grain boundary. Form the electron microscope study, it was concluded that the cause of age-hardening in this alloy is the precipitation of the PdCu ordered phase, which has AuCu I type face-centered tetragonal structure. Precipitation procedure was ${\alpha}\to{\alpha}+{\alpha}2+PdCu\to{\alpha}1+{\alpha}2+PdCu$ at Pd/Cu = 1 Ag-Pd-Cu alloy is more effective dental alloy as ageing treatment and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

Preventive Effects of Rosa rugosa Root Extract on Advanced Glycation End product-Induced Endothelial Dysfunction (해당근 추출물의 항산화 활성 및 최종당화산물에 의한 혈관내피세포 기능장애 억제활성)

  • Nam, Mi-Hyun;Lee, Hyun-Sun;Hong, Chung-Oui;Koo, Yoon-Chang;Seo, Mun-Young;Lee, Kwang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.210-216
    • /
    • 2010
  • Rosa rugosa has traditionally been used as a folk remedy for diabetes. The objective of this study was therefore to demonstrate the inhibition of endothelial dysfunction activities through antioxidants and the anti-glycation of Rosa rugosa roots. Dried roots of Rosa rugosa were boiled in methanol for three hours, evaporated and lyophilized with a freeze-dryer. The methanolic extract of Rosa rugosa roots (RRE) was tested for antioxidant activities by measuring total polyphenol (TP) content, flavonoid content, 1,1-diphenyl-2-picrylhydrazyl free radical-scavenging activity (DPPH) assay, and ferric-reducing antioxidant power (FRAP) assay. The total TP content, flavonoid content, FRAP value, and $DPPHSC_{50}$ are $345.2\;{\mu}g$ gallic acid equivalents/mg dry matter (DM), $128.1\;{\mu}g$ quercetin equivalents/mg DM, 2.2 mM $FeSO_4$/mg DM and $34.2\;{\mu}g$ DM/mL, respectively. Treatment of RRE significantly lowered fluorescent formation due to advanced glycation reaction. In addition, reactive oxygen species (ROS) scavenging assay, monocyte adherent assay and transendothelial electrical resistance (TEER) assay were performed to investigate the possibility that RRE improves endothelial dysfunction-induced diabetic complications. The adhesion of THP-1 to treated HUVEC with RRE ($100\;{\mu}g/mL$; 33% and $500\;{\mu}g/mL$; 75%) was significantly reduced compared to HUVEC stimulated by glyceraldehydes-AGEs (advanced glycation end product). The TEER value ($88\;{\Omega}{\cdot}cm^2$) of stimulated HUVEC by glyceraldehydes-AGEs was reduced compared to non-stimulation ($113\;{\Omega}{\cdot}cm^2$). However, normalization with RRE increased endothelial permeability in a dose-dependent manner ($100\;{\mu}g/mL$; $102\;{\Omega}{\cdot}cm^2$ and $500\;{\mu}g/mL$; $106\;{\Omega}{\cdot}cm^2$). Thus, these results suggest that Rosa rugosa roots could be a novel candidate for the prevention of diabetic complications through antioxidants and inhibition of advanced glycation end product formation.

Analysis of the Effect of the Etching Process and Ion Injection Process in the Unit Process for the Development of High Voltage Power Semiconductor Devices (고전압 전력반도체 소자 개발을 위한 단위공정에서 식각공정과 이온주입공정의 영향 분석)

  • Gyu Cheol Choi;KyungBeom Kim;Bonghwan Kim;Jong Min Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.255-261
    • /
    • 2023
  • Power semiconductors are semiconductors used for power conversion, transformation, distribution, and control. Recently, the global demand for high-voltage power semiconductors is increasing across various industrial fields, and optimization research on high-voltage IGBT components is urgently needed in these industries. For high-voltage IGBT development, setting the resistance value of the wafer and optimizing key unit processes are major variables in the electrical characteristics of the finished chip. Furthermore, the securing process and optimization of the technology to support high breakdown voltage is also important. Etching is a process of transferring the pattern of the mask circuit in the photolithography process to the wafer and removing unnecessary parts at the bottom of the photoresist film. Ion implantation is a process of injecting impurities along with thermal diffusion technology into the wafer substrate during the semiconductor manufacturing process. This process helps achieve a certain conductivity. In this study, dry etching and wet etching were controlled during field ring etching, which is an important process for forming a ring structure that supports the 3.3 kV breakdown voltage of IGBT, in order to analyze four conditions and form a stable body junction depth to secure the breakdown voltage. The field ring ion implantation process was optimized based on the TEG design by dividing it into four conditions. The wet etching 1-step method was advantageous in terms of process and work efficiency, and the ring pattern ion implantation conditions showed a doping concentration of 9.0E13 and an energy of 120 keV. The p-ion implantation conditions were optimized at a doping concentration of 6.5E13 and an energy of 80 keV, and the p+ ion implantation conditions were optimized at a doping concentration of 3.0E15 and an energy of 160 keV.

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • 2001.05b
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF