The Changes of Occludin in Tight Junction of Blood-Brain Barrier by ROS

치밀이음부 구조단백질인 Occludin에 대한 활성산소종의 영향

  • Lee, Hee-Sang (Department of Anatomy, College of Medicine, Chung-Ang University) ;
  • Kim, Dae-Jin (Department of Anatomy, College of Medicine, Chung-Ang University) ;
  • Sohn, Dong-Suep (Department of Thoracic & Cardiovascular Surgery, College of Medicine, Chung-Ang University) ;
  • Jeong, Bong-Su (Department of Anatomy, College of Medicine, Chung-Ang University) ;
  • Choi, Hyung-Taek (Department of Anatomy, College of Medicine, Chung-Ang University) ;
  • Sim, Kyu-Min (Department of Anatomy, College of Medicine, Chung-Ang University) ;
  • Lee, Keum-Jeong (Department of Anatomy, College of Medicine, Chung-Ang University) ;
  • Cho, Hye-Jin (Department of Anatomy, College of Medicine, Chung-Ang University) ;
  • Kim, Suk-Joong (Department of Anatomy, College of Medicine, Chung-Ang University) ;
  • Lee, Jong-Chan (Department of Anatomy, College of Medicine, Chung-Ang University) ;
  • Jeong, Yoon-Hee (Department of Anatomy, College of Medicine, Chung-Ang University) ;
  • Kim, Sung-Su (Department of Anatomy, College of Medicine, Chung-Ang University) ;
  • Lee, Won-Bok (Department of Anatomy, College of Medicine, Chung-Ang University)
  • 이희상 (중앙대학교 의과대학 해부학교실) ;
  • 김대진 (중앙대학교 의과대학 해부학교실) ;
  • 손동섭 (중앙대학교 의과대학 흉부외과학교실) ;
  • 정봉수 (중앙대학교 의과대학 해부학교실) ;
  • 최형택 (중앙대학교 의과대학 해부학교실) ;
  • 심규민 (중앙대학교 의과대학 해부학교실) ;
  • 이금정 (중앙대학교 의과대학 해부학교실) ;
  • 조혜진 (중앙대학교 의과대학 해부학교실) ;
  • 김석중 (중앙대학교 의과대학 해부학교실) ;
  • 이종찬 (중앙대학교 의과대학 해부학교실) ;
  • 정윤희 (중앙대학교 의과대학 해부학교실) ;
  • 김성수 (중앙대학교 의과대학 해부학교실) ;
  • 이원복 (중앙대학교 의과대학 해부학교실)
  • Published : 2004.12.01

Abstract

Cerebral microvessel endothelial cells that form blood-brain barrier (BBB) have tight junction for maintaining brain homeostasis. Occludin, one of tight junction protein, is crucial for BBB function. $H_2O_2$ induced occludin changes and effects in bovine brain BBB endothelial cells were examined in this study. The decrease of transendothelial electrical resistance (TEER) by $H_2O_2$ was due to disruption of occludin localization. Cytotoxicity test revealed that $H_2O_2$ did not cause cell death below 1 mM $H_2O_2$ within 4 hr. $H_2O_2$ caused intermittent disruption and loss of occludin at tight junctions and occludin disappeared with dose dependent manner from tight junction in confocal laser microscopy. But Western blot revealed that the total amounts of occludin increased by $H_2O_2$ administration. Transmission electron microscopy revealed that the ultrastructure of tight junction was not changed by $H_2O_2$. These data suggest that functional disruption of BBB by $H_2O_2$ was due to the localized loss of occludin in tight junction, but the expression of occludin increased in order to compensate the disrupted function in BBB.

뇌에서 혈액뇌장벽을 형성하는 내피세포는 치밀이음부를 통해 뇌의 항상성을 유지하고 있다. 치밀이음부의 단백질 중의 하나인 occludin은 뇌혈관장벽(BBB)의 기능을 유지하는 중요한 단백질로 인식되고 있다. 본 실험에서는 소의 뇌에서 배양된 BBB 내피세포에서 활성산소종의 하나인 $H_2O_2$에 의해 일어나는 occludin 단백질의 변화를 관찰하였다. $H_2O_2$에 의해 TEER가 감소하는 것은 occludin의 재분포에 의한 것이었다. 세포독성은 4시간내에서는 1mM $H_2O_2$ 이하에서는 나타나지 않았다. Confocal laser microscope으로 관찰한 결과, $H_2O_2$에 의해 occludin은 치밀이음부에서 중간중간이 사라져 감소해 있었고, 이러한 양상은 $H_2O_2$의 용량과 노출시간에 비례하였다. 그러나 Western blot 결과, occludin의 총량은 증가하였다. 투과전자현미경 관찰을 통해 $H_2O_2$가 세포사이의 결합의 구조에 뚜렷한 변화를 미치지 않는 것을 알 수 있었다. 이를 통해 $H_2O_2$에 의한 BBB 기능소실은 occludin이 치밀이음부에서 부분적으로 사라지는 것에 의하지만, 세포는 기능손상을 복구하기위한 방편으로 이 단백질의 생산을 더욱 증가시키는 것으로 생각된다.

Keywords

References

  1. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW: Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J BioI Chern 13(274) : 23463- 23467, 1999
  2. Bottaro D, Shepro D, Hechtman HH: Heterogeneity of intimal and microvessel endothelial cell barriers in vitro. Microvasc Res 32: 389-398, 1986 https://doi.org/10.1016/0026-2862(86)90073-7
  3. Bradbury MWB: The blood brain barrier. Exp Physiol 78 : 453-472, 1993 https://doi.org/10.1113/expphysiol.1993.sp003698
  4. Burdon RH, Gill V, Rice Evans C : Oxidative stress and tumor cell proliferation. Free Radic Res Comm 11 : 65-76, 1990 https://doi.org/10.3109/10715769009109669
  5. Carbajal JM, Schaeffer RC: $H_2O_2$ and genistein differentially modulate protein tyrosine phosphorylation, endothelial morphology, and monolayer barrier function. Biochem Biophy Res Commun 249 : 461-466, 1998 https://doi.org/10.1006/bbrc.1998.9172
  6. Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM: The tight junction protein ZO 1 establishes a link between the transmembrane protein occluding and the actin cytoskeleton, J Boil Chern 273 : 29745-29753, 1998 https://doi.org/10.1074/jbc.273.45.29745
  7. Gaillard PJ, Voorwinden LH, Nielson JL, Ivanov A,Atsumi R, Engman H, Ringbom C, Boer AG, Breimer DD: Establishment and functional characterization of an in vivo model Of the blood brain barrier, compromising a co culture of brain capillary endothelial cells and astrocytes. Euro J PharmacolSci 12 : 215-222, 2001 https://doi.org/10.1016/S0928-0987(00)00123-8
  8. Ghersi Egea JF, Strazielle N: Brain drug delivery, drug metabolism, and multidrug resistence at the choroid plexus. Drug Metabol 52 : 83-88, 2001
  9. Gumbleton M, Audus KL: Progress and limitation in the use of in vitro cell culture to serve as a permeability screen for the blood brain barrier. J pharmacol Sci 90(11) : 1681-1698, 2001 https://doi.org/10.1002/jps.1119
  10. Hirase T, Staddon JM, Saitou M, Ando Akatsuka Y, Itoh M, Furuse M, Fujimoto K, Tsukita S, Rubin LL: Occludin as a possible determinant of tight junction permeability in endothelial cell. J Cell Sci 110 : 1603-1613, 1997
  11. Huber JD, Egleton RD, Davis TP: Molecular physiology and pathophysiology of tight junctions in the blood brain barrier. TREND Neurosci 24(12) : 719-725, 2001 https://doi.org/10.1016/S0166-2236(00)02004-X
  12. Kniesel U, Wolburg H: Tight junctions of the blood brain barrier. Cell Mol Neurobiol 20(1) : 57-76, 2000 https://doi.org/10.1023/A:1006995910836
  13. Kallmann BA, Wagner S, Hummel V, Buttmann M, Bayas A, Tonn JC, Rieckmann P: Characteristic gene expression profile of primary human endothelial cell. FASEB Express Article 10.1096/fj.01 0594fje, 2002
  14. Kevil CG, Ohno N, Gute DC, Okayama N, Robinson SA, Cheney E, Alexander JS: Role of cadherin internalization in $H_2O_2$ mediated endothelial permeability. Free Radical Boil Med 24 : 1015 1022, 1998 https://doi.org/10.1016/S0891-5849(97)00433-4
  15. Kevil CG, Okayama N, Alexander JS: $H_2O_2$ mediated perm eability: Importance of tyrosine phosphatase and kinase activity. Am J Physiol Cell Physiol 281 : C1940 C1947, 2001 https://doi.org/10.1152/ajpcell.2001.281.6.C1940
  16. Kevil CG, Oshima T, Alexander B, Coe LL, Alexander JS: $H_2O_2$ mediated permeability: role of MAPK and occludin. Am J Physiol Cell Physiol 279(1) : C21 C30, 2000 https://doi.org/10.1152/ajpcell.2000.279.1.C21
  17. Kniesel U, Wolburg H: Tight junctions of the blood brain barrier. Cell Mol Neurobiol 20(1) : 57 76, 2000 https://doi.org/10.1023/A:1006995910836
  18. Loscher W, Potschka H: Role of multidrug transporters in pharmacoresistence to antiepileptic drug. Perspect PharmacoI 301(1) : 7 14, 2001
  19. Lum H, Barr DA, ShafferJR, Gordon RJ, Ezrin AM, Malik AB: Reoxygenation of endothelial cells increases permeability by oxidation dependent mechanism. Circ res 70 : 991 998, 1992 https://doi.org/10.1161/01.RES.70.5.991
  20. Mark KS, Davis TP: Cerebral microvascular changes in permeability and tight junctions induced by hypoxia reoxygenation. Am J Physiol Heart Circ Physiol 282(4) : H1485 H1494, 2002 https://doi.org/10.1152/ajpheart.00645.2001
  21. Mitic LL, Anderson JM: Molecular architecture of tight junetions. Annu Rev Physiol 60 : 121 142, 1998 https://doi.org/10.1146/annurev.physiol.60.1.121
  22. Parks DA, Shah AK, Granger DN: Oxygen radicals: effect on intestinal vascular permeability. Am J Physiol Gastrointest Liver Physiol 247 : G167 G170, 1984 https://doi.org/10.1152/ajpgi.1984.247.2.G167
  23. Pohlman TH, Harlan JM: Adaptive responses of the endothelium to stress. J Surgical Res 89 : 85 119, 2000 https://doi.org/10.1006/jsre.1999.5801
  24. Prat A, Biernacki K, Wosik K, AnteI JP: Glial cell influence on the human blood brain barrier. Glia 36 : 145 155, 2001 https://doi.org/10.1002/glia.1104
  25. Shimizu S, Nomoto M, Yamamoto T, Momose K: Reduction by NG nitro L arginine of $H_2O_2$ induced endothelial cell injury. Br J Pharmacol 113 : 564 568, 1994 https://doi.org/10.1111/j.1476-5381.1994.tb17026.x
  26. Siflinger Birnboim A, Goligorsky MS, Vecchino PJD, Malik AB: Involvement of$Ca^{2+}$ in the $H_2O_2$ induced increase in endothelial permeability, Am J Physiol Lung Cell Mol Physiol 270 : L973 L978, 1996 https://doi.org/10.1152/ajplung.1996.270.6.L973
  27. Tayarani I, Chaudiere J, Lefauconnier JM Bourre JM: Enzymatic protection against peroxidative damage in isolated brain capillaries. J Neurochem 48 : 1399 1402, 1987 https://doi.org/10.1111/j.1471-4159.1987.tb05677.x
  28. Trocha SD, Kevil CG, Mancini M, Alexander JS: Organ preservation solutions increase endothelial permeability and promote loss of junctional proteins. Ann Surg 230 : 105 113, 1999 https://doi.org/10.1097/00000658-199907000-00015
  29. Tsukamoto T, Nigam SK: Tight junction proteins form large complexesand associate with the cytoskeleton in an ATP depletion model for reversible junction assembly, J BioI Chem 272 : 16133 16139, 1999
  30. Yasuda M, Ohzeki Y, Shimizu S, Natio S, Ohtsuru A: Stimulation of in vitro angiogenesis by hydrogen peroxide and the relation with ETS 1 in endothelial cells. Life Sci 64 : 249 258, 1999 https://doi.org/10.1016/S0024-3205(98)00560-8