Kim, Kyung-Youn;Kim, Bong-Seok;Kang, Suk-In;Kim, Min-Chan;Lee, Jung-Hoon;Lee, Yoon-Joon
Journal of the Institute of Electronics Engineers of Korea SC
/
v.38
no.5
/
pp.23-32
/
2001
Electrical impedance tomography (EIT) is a relatively new imaging modality in which the resistivity (conductivity) distribution of the unknown object is estimated based on the known sets of injected currents and measured voltages on the surface of the object. In this paper, we propose a dynamical EIT reconstruction algorithm based on the regularized extended Kalman filter(EKF). The EIT inverse problem is formulated as dynamic equation which consists of the slate equation and the observation equation, and the unknown state(resistivity) is estimated recursively with the aid of the EKF. In doing so, the generalized Tikhonov regularization technique is employed in the cost functional to mitigate the ill-posedness characteristics of the inverse problem. Computer simulations for the 16-channel synthetic data are provided to illustrate the reconstruction performance of the proposed algorithm.
Electrical impedance tomography(EIT) is a relatively new imaging modality in which the internal impedivity distribution is reconstructed based on the known sets of injected currents and measured voltages on the surface of the object. We describe a dynamic EIT imaging technique for the case where the resistivity distribution inside the object changes rapidly within the time taken to acquire a full set of independent measurement data. In doing so, the inverse problem is treated as the state estimation problem and the unknown state (resistivity) is estimated with the aid of extended Kalman filter in a minimum mean square error sense. In particular, additional electrodes are attached to the known internal structure of the object to enhance the reconstruction performance and modified Tikhonov regularization technique is employed to mitigate the ill-posedness of the inverse problem. Computer simulations are provided to illustrate the reconstruction performance of the proposed algorithm.
In EIT, an array of disjoint electrodes is attached on the boundary of the object and a set of small alternating electrical currents is injected into the object through these electrodes, and then the corresponding set of voltages is measured on the same array of the electrodes. The objective in EIT is to estimate the resistivity distribution inside the object based on the set of measured voltages and injected currents. In this paper, we proposed a new dynamic EIT reconstruction scheme based on the interacting multiple model (IMM) algorithm. The main contribution of the proposed scheme is that multiple models are employed for the state evolution to get around the modeling uncertainty. Extensi...
Choi, Myoung-Hwan;Kao, Tzu-Jen;Isaacson, David;Saulnier, Gary J.;Newell, Jonathan C.
International Journal of Control, Automation, and Systems
/
v.6
no.4
/
pp.613-619
/
2008
A method to produce a desired current pattern in a multiple-source EIT system using voltage sources is presented. Application of current patterns to a body is known to be superior to the application of voltage patterns in terms of high spatial frequency noise suppression, resulting in high accuracy in conductivity and permittivity images. Since current sources are difficult and expensive to build, the use of voltage sources to apply the current pattern is desirable. An iterative algorithm presented in this paper generates the necessary voltage pattern that will produce the desired current pattern. The convergence of the algorithm is shown under the condition that the estimation error of the linear mapping matrix from voltage to current is small. Simulation results are presented to illustrate the convergence of the output current.
In boundary estimation in Electrical Impedance Tomography (EIT), conventional method is the modified Newton Raphson (mNR) method .The mNR is famous for good method since has good convergence and robustness against noisy data. But the mNR is low efficiency to get and update Jacobian matrix. So, the mNR become very slow algorithm. We propose the Quasi Newton (QN) method to improve efficiency which will lead to speed up in boundary estimation. The QN can improve a low efficiency by using estimated Jacobian matrix contrary to using exactly calculated Jacobian matrix, this used by the mNR. And finally, we propose the modified Quasi Newton (mQN) method because the QN has some problems such as bad early convergence rate and instability of 'divided by zero'. For the verification of the propose method, numerical experiments are conducted and the results show a good performance.
Subsurface topology estimation is an important factor in the geophysical survey. Electrical impedance tomography is one of the popular methods used for subsurface imaging. The EIT inverse problem is highly nonlinear and ill-posed; therefore, reconstructed conductivity distribution suffers from low spatial resolution. The subsurface region can be approximated as piece-wise separate regions with constant conductivity in each region; therefore, the conductivity estimation problem is transformed to estimate the shape and location of the layer boundary interface. Each layer interface boundary is treated as an open boundary that is described using front points. The subsurface domain contains multi-layers with very complex configurations, and, in such situations, conventional methods such as the modified Newton Raphson method fail to provide the desired solution. Therefore, in this work, we have implemented a 7-layer artificial neural network (ANN) as an inverse problem algorithm to estimate the front points that describe the multi-layer interface boundaries. An ANN model consisting of input, output, and five fully connected hidden layers are trained for interlayer boundary reconstruction using training data that consists of pairs of voltage measurements of the subsurface domain with three-layer configuration and the corresponding front points of interface boundaries. The results from the proposed ANN model are compared with the gravitational search algorithm (GSA) for interlayer boundary estimation, and the results show that ANN is successful in estimating the layer boundaries with good accuracy.
Osteoporosis is a clinical condition in which the amount of bone tissue is reduced and the likelihood of fracture is increased. It is known that the electrical property of the bone is related to its density, and, in particular, the electrical resistance of the bone decreases as the bone loss increases. This implies that the electrical property of bone may be an useful parameter to diagnose osteoporosis, provided that it can be readily measured. The study attempted to evaluate the electrical conductivity of bone using a technique of electrical impedance tomography (EIT). It nay not be easy in general to get an EIT for the bone due to the big difference (an order of 2) of electrical properties between the bone and the surrounding soft tissue. In the present study, we took an adaptive mesh regeneration technique originally developed for the detection of two phase boundaries and modified it to be able to reconstruct the electrical conductivity inside the boundary provided that the geometry of the boundary was given. Numerical simulation was carried out for a tibia phantom, circular cylindrical phantom (radius of 40 mm) inside of which there is an ellipsoidal homeogenous tibia bone (short and long radius are 17 mm and 15 mm, respectively) surrounded by the soft tissue. The bone was located in the 15 mm above from the center of the circular cross section of the phantom. The electrical conductivity of the soft tissue was set to be 4 mS/cm and varies from 0.01 to 1 ms/cm for the bone. The simulation considered measurement errors in order to look into its effects. The simulated results showed that, if the measurement error was maintained less than 5 %, the reconstructed electrical conductivity of the bone was within 10 % errors. The accuracy increased with the electrical conductivity of the bone, as expected. This indicates that the present technique provides more accurate information for osteoporotic bones. It should be noted that tile simulation is based on a simple two phase image for the bone and the surrounding soft tissue when its anatomical information is provided. Nevertheless, the study indicates the possibility that the EIT technique may be used as a new means to detect the bone loss leading to osteoporotic fractures.
목적: 생체 조직에서의 전기임피던스 분포는 생리적 기능에 대하여 풍부한 정보를 가지고 있다. 이러한 전기임피던스 분포는 전기임피던스단층촬영법(EIT)으로 구할 수 있으나 공간해상도가 열악하여 그 사용이 보편화되지 못하고 있다. 기존의 EIT의 한계점을 극복하기 위하여 EIT와 MRI 기술을 결합한 자기공명임피던스단층촬영법(MREIT: Magnetic Resonance Electrical Impedance Tomography)이 최근 제안되었다. MREIT는 영상복원 과정에서 x, y, z 3방향의 자속밀도 벡터를 필요로 하므로 MRI용 자석 내에서 물체를 3차원으로 회전하여 자속밀도 벡터를 구해야 한다. 이러한 3차원 회전은 MREIT가 실제 임상에 적용되는데 있어서 한계점으로 지적되고 있다. 본 논문에서는 물체 회전을 하지 않고 전기임피던스 분포를 얻을 수 있는 새로운 MREIT 방법을 제안하였다. 새로운 MREIT 방법의 원리에 대해서 소개하고 0.3T의 주자장세기를 갖는 연구용 MRI 시스템에서 얻은 MREIT영상을 소개하고자 한다.
In EIT(electrical impedance tomography), the internal resistivity(or conductivity) distribution of the unknown object is estimated using the boundary voltage data induced by different current patterns using various reconstruction algorithms. In this paper, we present a regularized modified Newton-Raphson(mNR) scheme which employs additional a priori information in the cost functional as soft constraint and the weighting matrices in the cost functional are selected based on the exponentially weighted least square criterion. The computer simulation for the 32 channels synthetic data shows that the reconstruction performance of the proposed scheme is improved compared to that of the conventional regularized mNR at the expense of slightly increased computational burden.
In electrical impedance tomography (EIT), modified Newton Raphson (mNR) method is widely used inverse algorithm for static image reconstruction due to its convergence speed and estimation accuracy. The unknown conductivity distribution is estimated iteratively by minimizing a cost functional such that the residual error namely the difference in measured and calculated voltages is reduced. Although, mNR method has good estimation performance, EIT inverse problem still suffers from ill-conditioned and ill-posedness nature. To mitigate the ill-posedness, generally, regularization methods are adopted. The inverse solution is highly dependent on the choice of regularization parameter. In most cases, the regularization parameter has a constant value and is chosen based on experience or trail and error approach. In situations, when the internal distribution changes or with high measurement noise, the solution does not get converged with the use of constant regularization parameter. Therefore, in this paper, in order to improve the image reconstruction performance, we propose a new scheme to determine the regularization parameter. The regularization parameter is computed based on residual error and updated every iteration. The proposed scheme is tested with numerical simulations and laboratory phantom experiments. The results show an improved reconstruction performance when using the proposed regularization scheme as compared to constant regularization scheme.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.