• 제목/요약/키워드: electrical forces

검색결과 409건 처리시간 0.036초

초고압 XLPE 케이블의 국부적 늘림에 대한 파괴강도 고찰 (Evaluation of Breakdown Strength on the Locally Dented Power Cable)

  • 김영호;이상진;조대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.251-254
    • /
    • 2001
  • Internal and external forces may be applied on the power cable in the both process of transportation and installation. Even though the EHV power cables have the structure of metal sheath and plastic jacket etc. to minimize these negative influences, the unusual forces result in the unexpected deformation of the cable. Compressing moulded XLPE model cable sheets were prepared and locally dented with round-edge and square-edge tools. All data were analyzed employing Weibull distribution. The breakdown strength of dented molded specimens showed lower values than the normal ones by 10-60%.

  • PDF

탑승자의 안전을 고려한 지능형 휠체어의 단일 이동 장애물 충돌회피 알고리즘 (Collision Avoidance Algorithm of an Intelligent Wheelchair Considering the User's Safety with a Moving Obstacle)

  • 김용휘;윤태성;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제19권10호
    • /
    • pp.936-940
    • /
    • 2013
  • As the ageing population grows around the world, the demand for electric wheelchairs, an important mobility assistance device for the disabled and elderly, is gradually increasing. Therefore, a number of studies related to intelligent wheelchairs are actively underway to improve safety and comfort for wheelchair users. However, previous collision avoidance studies for intelligent wheelchairs have concentrated on collision avoidance methods with the shortest distance and by only changing either velocity or heading angle, rather than considering the forces exerted on the user. If a collision avoidance algorithm that does not consider these forces is applied to an intelligent wheelchair, there is a possibility of an accident due to falling as wheelchair users are generally disabled and elderly people. In this paper, we propose a collision avoidance algorithm which minimizes the forces exerted on a wheelchair user by minimizing the variation of the wheelchair's velocity and heading angle when the sizes, positions, velocities, and heading angles of a wheelchair and a moving obstacle are known.

두 평판 전극간에 놓인 하전된 마이크로 입자에 작용하는 힘에 대한 해석 (Analysis of forces on a charged micron-sized particle between two parallel-plate electrodes)

  • 김승택;이상호;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1519_1520
    • /
    • 2009
  • This paper investigates forces on a charged particle used in the e-paper application. The particles were inserted into the pixels and according to the applied voltage, particles moves up or down to the electrodes. So, to design the e-paper, the force analysis is very important for the stable operation of e-paper. For these purposes, we divided forces into 4 different forces and numerically evaluated each force. From the simulation results, we confirmed that the minimum voltage to detach the particle from the bottom electrode can be obtained for the given condition.

  • PDF

농형 유도전동기의 자기적 진동 분포력 (The Magnetic Vibrating Distribution Force of Squirrelcage Induction Motor)

  • 이은웅;이상호;김일중;이민명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.77-79
    • /
    • 1988
  • There are various causes for noise production in induction motors, and among them, the noise generated by magnetic vibrating distribution forces have an important meanings. In this paper, the magnetic vibrating distribution forces in squirrelcage induction motors were arranged systematically in the consideration of stator harmonics and it's forces were not considered the effection of airgap eccentricity and deformation. With the application of the finite element method in order to find magnetic flux density and with the calculation of the permeance of rotor node, the magnetic vibrating distribution forces were analyzed.

  • PDF

Reduction of Electromagnetic Force in AC Distributed Winding of Fault Current Limiter under Short-Circuit Condition

  • Ghabeli, Asef;Yazdani-Asrami, Mohammad;Doroudi, Aref;Gholamian, S. Asghar
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.400-404
    • /
    • 2015
  • Various kinds of winding arrangements can be used to enable fault current limiters (FCL) to tolerate higher forces without resulting in a substantial increase in construction and fabrication costs. In this paper, a distributed winding arrangement is investigated in terms of its effects on the short-circuit forces in a three-phase FCL. The force magnitudes of the AC supplied windings are calculated by employing a finite element-based model in the time stepping procedure. The leakage flux and radial and axial force magnitudes obtained from the simulation are compared to those obtained from a conventional winding arrangement. The comparison shows that the distributed winding arrangement significantly reduces the radial and, especially, the axial force magnitudes.

Comparison of Biot-Savart's Law and 3D FEM in the Study of Electromagnetic Forces Acting on End Winding

  • Kim, Ki-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.369-374
    • /
    • 2011
  • An induction motor operated with high voltage source generally generates high current in starting mode and has a long transient time after being started. This large and sustaining starting current causes the end windings of the stator to have excessive electromagnetic force. This force is the source of vibration and has a negative and serious influence on the insulation of end windings. Therefore, designing the end winding part with an appropriate support system is needed. To design the support ring enclosing the end windings, we analyze the distribution of electromagnetic force on the end windings by applying the Biot-Savart's law and the 3D finite element method (FEM), and comparing two simulation methods. Finally, we verify the safety of the support structure of the end winding part using stress analysis, which is analyzed with the electromagnetic forces from the 3D FEM simulation.

모델 불확실성을 갖는 6자유도 원격조종 수중로봇의 외란 관측기 기반 제어 (Disturbance Observer-Based Control for 6-DOF Remotely Operated Underwater Vehicle with Model Uncertainties)

  • 김준식;이동철;최영진
    • 로봇학회논문지
    • /
    • 제18권1호
    • /
    • pp.82-87
    • /
    • 2023
  • This paper proposes a disturbance observer-based control for 6-DOF remotely operated underwater vehicles with model uncertainties. The sum of external disturbance and the forces generated from model parameters except for the inertial matrix of the hydrodynamic model is defined as a lumped disturbance in this paper. Then, the lumped disturbance caused by model uncertainties and the external forces is estimated using the disturbance observer. Fortunately, the disturbance observer is constructed as a linear form because all the elements of the inertial matrix of the hydrodynamic model are constants. To verify the proposed control scheme, we show that the actual lumped disturbance is similar to the estimated lumped disturbance obtained by the disturbance observer. Finally, the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

Prediction of Change in Equivalent Circuit Parameters of Transformer Winding Due to Axial Deformation using Sweep Frequency Response Analysis

  • Sathya, M. Arul;Usa, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.983-989
    • /
    • 2015
  • Power transformer is one of the major and key apparatus in electric power system. Monitoring and diagnosis of transformer fault is necessary for improving the life period of transformer. The failures caused by short circuits are one of the causes of transformer outages. The short circuit currents induce excessive forces in the transformer windings which result in winding deformation affecting the mechanical and electrical characteristics of the winding. In the present work, a transformer producing only the radial flux under short circuit is considered. The corresponding axial displacement profile of the windings is computed using Finite Element Method based transient structural analysis and thus obtained displacements are compared with the experimental result. The change in inter disc capacitance and mutual inductance of the deformed windings due to different short circuit currents are computed using Finite Element Method based field analyses and the corresponding Sweep Frequency Responses are computed using the modified electrical equivalent circuit. From the change in the first resonant frequency, the winding movement can be quantified which will be useful for estimating the mechanical withstand capability of the winding for different short circuit currents in the design stage itself.

항공기 시뮬레이터용 조종 반력 시스템 실시간 제어기 개발 (Development of the Real-time Controller for Control Loading System in Aircraft Simulator)

  • 박준호;김태규;박승규;윤태성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1846-1847
    • /
    • 2006
  • In this study, we developed the real-time controller for control loading system (CLS) of aircraft simulator. The CLS is given the forces as inputs: the exerted force by a pilot, which is determined according to the position of the control stick, and the calculated force by the host computer. And then CLS makes the pilot feel the back loading force by supplying the motor drive with the actuator signal. The developed real-time controller for CLS is organized into the five parts which are the position sensing part including a encoder, the A/D converter part for the analog load cell signal, the communication interface part to communicate with the host, the D/A converter for the actuator signal, and the CPU DSP2812 to carry out a control algorithm. We constructed the test control loading system and carried out the experiment with the developed real-time controller. The experimental results showed that the real-time controller generates the back loading forces similar to the desired back loading force graph.

  • PDF

Nonlinear vibration of nanosheets subjected to electromagnetic fields and electrical current

  • Pourreza, Tayyeb;Alijani, Ali;Maleki, Vahid A.;Kazemi, Admin
    • Advances in nano research
    • /
    • 제10권5호
    • /
    • pp.481-491
    • /
    • 2021
  • Graphene Nanosheets play an important role in nanosensors due to their proper surface to volume ratio. Therefore, the main purpose of this paper is to consider the nonlinear vibration behavior of graphene nanosheets (GSs) under the influence of electromagnetic fields and electrical current create forces. Considering more realistic assumptions, new equations have been proposed to study the nonlinear vibration behavior of the GSs carrying electrical current and placed in magnetic field. For this purpose, considering the influences of the magnetic tractions created by electrical and eddy currents, new relationships for electromagnetic interaction forces with these nanosheets have been proposed. Nonlinear coupled equations are discretized by Galerkin method, and then solved via Runge-Kutta method. The effect of different parameters such as size effect, electrical current magnitude and magnetic field intensity on the vibration characteristics of GSs is investigated. The results show that the magnetic field increases the linear natural frequency, and decreases the nonlinear natural frequency of the GSs. Excessive increase of the magnetic field causes instability in the GSs.