• Title/Summary/Keyword: electrical control circuit

Search Result 1,790, Processing Time 0.03 seconds

A Study on the Length of Electrical Separation Joint in AF Track Circuit (AF궤도회로에서 전기적 절연구간의 길이에 대한 연구)

  • Lee, Myung-Chul;Park, Jae-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.70-75
    • /
    • 2013
  • The electrical separation joint as a filter circuit distributes the track circuit frequency. The electrical separation joint is classified into the interval where reinforcing bars are insulated and not insulated through the length of track circuit. In case of incorrectly setting up the length of electrical separation joint, the amplitude of current on the track circuit is not over standard current which is the standard of current on the track circuit and it effects on the close frequency on track circuit. Then, it makes an accident or makes a train not receive information for train control. In this paper, the electrical separation joint model is suggested and parameters are numerically calculated in the model. Moreover, the length of electrical separation joint is analyzed and is demonstrated by uisng Matlab and PSpice program.

Integrated Current-Mode DC-DC Buck Converter with Low-Power Control Circuit

  • Jeong, Hye-Im;Lee, Chan-Soo;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.235-241
    • /
    • 2013
  • A low power CMOS control circuit is applied in an integrated DC-DC buck converter. The integrated converter is composed of a feedback control circuit and power block with 0.35 ${\mu}m$ CMOS process. A current-sensing circuit is integrated with the sense-FET method in the control circuit. In the current-sensing circuit, a current-mirror is used for a voltage follower in order to reduce power consumption with a smaller chip-size. The N-channel MOS acts as a switching device in the current-sensing circuit where the sensing FET is in parallel with the power MOSFET. The amplifier and comparator are designed to obtain a high gain and a fast transient time. The converter offers well-controlled output and accurately sensed inductor current. Simulation work shows that the current-sensing circuit is operated with an accuracy of higher than 90% and the transient time of the error amplifier is controlled within $75{\mu}sec$. The sensing current is in the range of a few hundred ${\mu}A$ at a frequency of 0.6~2 MHz and an input voltage of 3~5 V. The output voltage is obtained as expected with the ripple ratio within 1%.

A Study on Dynamic Characteristics of Electrical Fire Prevention Control Devices with a lamp and a motor load (전등 부하 및 전동기 부하시 전기화재예방 제어장치의 동작 특성에 관한 연구)

  • Lee, Sang-Ho;Oh, Hong-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • Recently, the occurrences of electrical fire have been suppressed by an earth leakage breaker(ELB), a no fuse breaker(NFB) and a fuse in case of an earth leakage, a short circuit and an over current. But it is impossible for the ELB to break the circuit in the case of the failure of pressure contacts on connecting points and the momentary short circuit. Therefore, it is require to study the constructive problem of the ELB. In this paper, we have developed the auxiliary control device, electrical fire prevention control device(EFPCD), of the ELB. And we have tested the operation characteristics of the ELB according to the load(R, L) As a result of this experiment, we could prevent the electrical fire due to the spark and the overheat occurring in the failure of pressure contacts on connecting points and the momentary short circuit.

  • PDF

Chaos Control in Chua's Circuit (Chua 회로에서의 카오스 제어)

  • Ko, Jae-Ho;Bang, Sung-Yun;Bae, Young-Chul;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1083-1085
    • /
    • 1996
  • Controlling chaos is a new concept, which transform chaotic signal to fixed points, or low periodic orbits. In this paper we propose state feedback method in order to control chaotic signal in canonical Chua's circuit Canonical Chua's circuit is a simple electronic circuit consists of two linear resistors, a linear inductor, two linear capacitors, and only one nonlinear element so called Chua's diode. This nonlinear element supplies power to the circuit and drives the chaotic oscillations. Proposed control method is successful to control chaotic signal in canonical Chua's circuit Result shows that chaotic trajectory change rapidly its orbit to stable fixed points, 1 periodic orbit, or 2 periodic orbit when control signal applies.

  • PDF

Digitalization of the phase Control Circuit of a three-phase Controlled Rectifier (삼상제어력유기 입상 제어회로의 디지털화)

  • 박민호;정승기;김기택
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.2
    • /
    • pp.107-113
    • /
    • 1987
  • A complete design of a new digital control circuit for a three-phase controlled rectifier is presented. The circuit consists of a gating signal generating ROM, down counter and adder. Proposed scheme is simple and quite adequate to the microprocessor-based digitally controlled systems. The basic principle and operation characteristics of the circuit are described and experimental-results show good dynamic performance. Synchronization problem with noisy reference is also discussed. The basic phylosophy developed can be extended to the other phase control system, e.g., cycloconverters, ac voltoge controllers, etc.

High Performance Charge Pump Converter with Integrated CMOS Feedback Circuit

  • Jeong, Hye-Im;Park, Jung-Woong;Choi, Ho-Yong;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.139-143
    • /
    • 2014
  • In this paper, an integrated low-voltage control circuit is introduced for a charge pump DC-DC boost converter. By exploiting the advantage of the integration of the feedback control circuit within CMOS technology, the charge pump boost converter offers a low-current operation with small ripple voltage. The error amplifier, comparator, and oscillator in the control circuit are designed with the supply voltage of 3.3 V and the operating frequency of 1.6~5.5 MHz. The charge pump converter with the 4 or 8 pump stages is measured in simulation. The test in the $0.35{\mu}m$ CMOS process shows that the load current and ripple ratio are controlled under 1 mA and 2% respectively. The output-voltage is obtained from 4.8 ~ 8.5 V with the supply voltage of 3.3 V.

In Memristor Based Differential or Integral Control Circuit, Hysteresis Curve Characteristic Analysis According to Capacitance (멤리스터 기반 미분 및 적분제어 회로에서의 커패시턴스 변화에 따른 히스테리시스 곡선 특성 분석)

  • Choi, Jin-Woong;Mo, Young-Sea;Song, Han-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.658-664
    • /
    • 2015
  • This paper presents an electrical feature analysis of hysteresis curves in memristor differential and intergral control circuit. After making macro model of the memristor device, electric characteristics of the model such as time analysis, frequency dependent DC I-V curves were performed by PSPICE simulation. Also, we made a circuit of memristor-capacitor based on nano-wired memristor device and analyzed the simulated PSPICE results. Finally, we proposed a memristor based differential or integral control circuit, analyzed hysteresis curve characteristic in the control circuit.

A Study on The Development of IPM for PDP Drive (PDP 구동용 IPM 개발에 관한 연구)

  • Kim, Jin-Il;Jeong, Jin-Beom;Kim, Hee-Jun;Kim, Sun-Hwan;Oh, Pil-Kyoung
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.187-190
    • /
    • 2002
  • Plasma Display Panel(PDP) has been recognized as one of the most competitive display panel. Hence, the importance of PDP driving circuit is getting higher and higher. At the same time, it is strongly required for the driving circuit to be high efficiency, high stability, and cost effective one. In this work, a stable PDP driving circuit is developed by improving the circuit configuration. And the reliability and the productivity of the driving circuit are improved by using the Intelligent Power Module(IPM) technology. Finally operating characteristics of the developed IPM driving circuit are verified by using signal source board developed.

  • PDF

Circuit Design and Performance Analysis of CCFL Dimming Controller With Frequency Modulation

  • Kim, Cherl-Jin;Ji, Jae-Geun;Yoon, Shin-Yong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.201-205
    • /
    • 2004
  • The CCFL dimming control methods are generally used lamp current regulation or average current adjustment method feeding the CCFL inverter. Inverter operation frequency is higher than resonant frequency for safe operation. In this study, we design the half-bridge type series and parallel resonant converter circuit that switches at variable frequency modulation methods to control the output power. This method has advantages such as low EMI and reduced harmonics, and it is convenient for dimming control using a microprocessor. The validity of this study is confirmed from the simulation and experimental results.

An Instrumentation System Design for Electrical Accident Prevention of 3-Phase Electrical Control Panel (3상 전기제어반 전기사고 예방을 위한 계측시스템 설계)

  • Kwak, D.K.;Choi, J.K.;Kim, J.J.;Kwon, Y.J.;Song, G.
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.36-37
    • /
    • 2016
  • The main cause of electrical fires are caused due to short circuit and open circuit. This is generates an instantaneous electric arc or spark accompanied with such electric faults. These arcs generate a pressed wire, contact badness, and a weakness in the wire coating etc.. This research proposes a protection circuit to prevent open-phase accident due to contact failure of electromagnetic contactor, tracking arc fault, open-phase within the three-phase electrical control panel which is the most commonly applied in the industry. The proposed circuit also alarms and cuts off of power system when electrical faults occurs. In addition, the proposed circuit is validated by various electric accident simulator.

  • PDF