• Title/Summary/Keyword: electric vehicle

Search Result 2,208, Processing Time 0.029 seconds

Experimental Study on Aerodynamic Performance and Wake Characteristics of the Small Ducted Fan for VTOL UAV (수직 이착륙 무인기용 소형 덕티드팬의 공력성능 및 후류특성에 관한 실험적 연구)

  • Shin, Soo-Hee;Lee, Seung-Hun;Kim, Yang-Won;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Wind tunnel test for a small scale electric ducted fan with a 104mm diameter was conducted to analyze the aerodynamic characteristics when it was used as a propulsion system of tilt-propeller UAV. Experimental conditions were derived from flight conditions of a sub-scaled OPPAV. Forces and moments of the ducted fan model were measured by a 6-axis balance and 3-dimensional wake vectors which could induce an aerodynamic influence in the vehicle were measured by 5-hole probes. Thrust and torque on hover and cruise conditions were measured and analyzed to drive out the operating conditions when it was applied in the sub-scaled OPPAV. On transition conditions, thrust keep its value with tilt angle variation below 40° and increase after that. But, sideforce increase constantly until 75°. The maximum axial velocity in the wake on hover and cruise conditions was around 60m/s and tangential velocity was around 12m/s. The position of the maximum axial velocity and vortex center move off the fan rotation center line as the tilt angle increases.

Study for Failure Examples Including with Gas filter Clogging of Emergency Cutting Valve, Assemblying Part Damage of Solenoid Valve, Contact Damage of LPG Switch Connector Fin in a LPG Car (LPG 자동차의 긴급차단밸브 기상필터막힘, 솔레노이드밸브 조립부손상, LPG 스위치 커넥터 핀 접촉불량에 관련된 고장사례 연구)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Kim, Jee Hyun;Kim, Sung Mo;Jung, Dong Hwa;You, Chang Bae;Moon, Hak Hoon;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • This paper is a purpose to study and analyze the engine starting failure examples for LPG car. The first example, the researcher verified the phenomenon that didn't supply the fuel because of filter clogging by fine alien substance in the gas valve line when he inspected the emergency cutting valve. The second example, there was no the influence of gas leakage when the solenoid operated at first. But the damage part of solenoid assemblying face wad downed a durability according to running a valve. Eventually, the researcher checked on the phenomenon of engine stopping by no gas feeding in solenoid because of leaking of gas. The third example, the researcher sought that the wiring sheaths of connector fin between EGR 10A fuse and LPG switch verified the burn-out phenomenon due to the bad contacting as tension damage produced the overheating. Therefore, the manager of a car has to do pre-inspection no producing electric failure and he must maintain his car with optimum condition.

Sentiment Analysis and Issue Mining on All-Solid-State Battery Using Social Media Data (소셜미디어 분석을 통한 전고체 배터리 감성분석과 이슈 탐색)

  • Lee, Ji Yeon;Lee, Byeong-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.11-21
    • /
    • 2022
  • All-solid-state batteries are one of the promising candidates for next-generation batteries and are drawing attention as a key component that will lead the future electric vehicle industry. This study analyzes 10,280 comments on Reddit, which is a global social media, in order to identify policy issues and public interest related to all-solid-state batteries from 2016 to 2021. Text mining such as frequency analysis, association rule analysis, and topic modeling, and sentiment analysis are applied to the collected global data to grasp global trends, compare them with the South Korean government's all-solid-state battery development strategy, and suggest policy directions for its national research and development. As a result, the overall sentiment toward all-solid-state battery issues was positive with 50.5% positive and 39.5% negative comments. In addition, as a result of analyzing detailed emotions, it was found that the public had trust and expectation for all-solid-state batteries. However, feelings of concern about unresolved problems coexisted. This study has an academic and practical contribution in that it presented a text mining analysis method for deriving key issues related to all-solid-state batteries, and a more comprehensive trend analysis by employing both a top-down approach based on government policy analysis and a bottom-up approach that analyzes public perception.

Analysis of effect of hydrogen jet fire on tunnel structure (수소 제트화염이 터널 구조체에 미치는 영향 분석)

  • Park, Jinouk;Yoo, Yongho;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2021
  • A policy to expand the hydrogen economy has been established in Korea and the supply of FCEV is being expanded to realize a hydrogen society. Therefore, the supply of FCEV is expected to increase rapidly, and a solution to respond to accidents of FCEV is required. In this study, an experimental study was conducted to analyze the effect of the hydrogen jet flame generated by a FCEV on the inner wall of the tunnel and the characteristics of the internal radiant heat. For the experiment, the initial pressure of hydrogen tank was set to 700 bar, and the injection nozzle diameter was set to 1.8 mm in order to make the same as the conditions generated in the FCEV. In addition, a tunnel fire resistance test specimen having the same strength as the compressive strength of concrete applied to general tunnels of 40 MPa was manufactured and used in the experiment. The results were analyzed for the separation distance (2 m and 4 m) between the hydrogen release nozzle and the tunnel fire resistance test concrete. As the result, the maximum internal temperature of the test concrete was measured to 1,349.9℃ (2 m separation distance), and the radiant heat around the jet flame was up to 39.16 kW/m2.

Analysis of Cable Protection of Duct in Lightning and HIRF Environment of UAM Aircraft and a Proposal for Certification Guidance (UAM 항공기 낙뢰 및 HIRF 환경에서 덕트의 케이블 보호 성능 분석 및 인증기술에 관한 연구)

  • Kim, Dong-Hyeon;Jo, Jae-Hyeon;Kim, Yun-Gon;Lee, Hakjin;Myong, Rho-Shin
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.23-34
    • /
    • 2022
  • Cities around the world are increasing their demand for Urban Air Mobility (UAM) aircraft due to traffic congestion with population concentration. Aircraft with various shapes depending on fixed-wing and propulsion systems, are being prepared for commercialization. Airworthiness certification is required as it is a manned transportation vehicle that flies in the city center and transports people on board. UAM aircraft are vulnerable to lightning and HIRF environments due to the increasing use of composite materials, the use of electric motors, and use of electronic equipment. Currently, the development of certification technology, guidelines, and requirements in lightning and HIRF environments for UAM aircraft is incomplete. In this study, the certification procedures for lightning and HIRF indirect impacts of rotorcraft shown in AC 20-136B and AC 20-158A issued by the Federal Aviation Administration (FAA), were verified and applied to the computerized simulation of UAM aircraft. The impact of lightning and HIRF on ducted fan UAM aircraft was analyzed through computerized simulation, and the basis for establishing practical guidelines for certification of UAM aircraft to be operated in the future is presented.

Evaluation of Greenhouse Gas Emissions for Life Cycle of Mixed Construction Waste Treatment Routes (혼합 건설폐기물 처리경로별 전과정 온실가스 발생량 평가)

  • Kim, Da-Yeon;Hwang, Yong-Woo;Kang, Hong-Yoon;Moon, Jin-Young
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.56-64
    • /
    • 2022
  • Construction waste is generated at a rate of approximately 221,102 tons/day in Korea. In particular, mixed construction waste generates approximately 24,582 tons/day. The other components were recycled by 98.9%. The amount of greenhouse gas emissions from the waste was 17.1 million tons of CO2 equaling 2.3% of the total greenhouse gas emissions. To reduce greenhouse gas emissions, reducing the environmental impact is becoming increasingly important. However, appropriate treatment must first be established, as mixed construction waste is also increasing. Thus, an effective plan is urgently needed because it is frequently segregated and sorted by the landfill and incinerated. In addition, there is an urgent need to prepare various effective recycling methods rather than a simple treatment. Therefore, this study analyzed the environmental impact of the treatment of mixed construction waste by calculating greenhouse gas emissions. As a result, the highest greenhouse gas generation occurred during the incineration stage. Moreover, the optimal method to reduce greenhouse gas emissions is recycling and energy recovery from waste. In addition, the amount of greenhouse gas generated during energy recovery from the waste stage was the second highest. However, greenhouse gas emissions can be reduced by using waste as energy to reduce fossil fuel consumption. In addition, for the transportation stage, the optimal reduction plan is to minimize the amount of greenhouse gas emissions by setting the optimal distance and applying biofuel and electric vehicle operations.

A Review on the Wet Chemical Synthesis of Sulfide Solid Electrolytes for All-Solid-State Li Batteries (전고체전지용 황화물 고체전해질 습식 합성기술 동향)

  • Ha, Yoon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.95-104
    • /
    • 2022
  • The development of non-flammable all-solid-state batteries (ASSLBs) has become a hot topic due to the known drawbacks of commercial lithium-ion batteries. As the possibility of applying sulfide solid electrolytes (SSEs) for electric vehicle batteries increases, efforts for the low-cost mass-production are actively underway. Until now, most studies have used high-energy mechanical milling, which is easy to control composition and impurities and can reduce the process time. Through this, various SSEs that exceed the Li+ conductivity of liquid electrolytes have been reported, and expectations for the realization of ASSLBs are growing. However, the high-energy mechanical milling method has disadvantages in obtaining the same physical properties when mass-produced, and in controlling the particle size or shape, so that physical properties deteriorate during the full process. On the other hand, wet chemical synthesis technology, which has advantages in mass production and low price, is still in the initial exploration stage. In this technology, SSEs are mainly manufactured through producing a particle-type, solution-type, or mixed-type precursor, but a clear understanding of the reaction mechanism hasn't been made yet. In this review, wet chemical synthesis technologies for SSEs are summarized regarding the reaction mechanism between the raw materials in the solvent.

Electrochemical Behaviors of Graphite/LiNi0.6Co0.2Mn0.2O2 Cells during Overdischarge (흑연과 LiNi0.6Co0.2Mn0.2O2로 구성된 완전지의 과방전 중 전기화학적 거동분석)

  • Bong Jin Kim;Geonwoo Yoon;Inje Song;Ji Heon Ryu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • As the use of lithium-ion secondary batteries is rapidly increasing due to the rapid growth of the electric vehicle market, the disposal and recycling of spent batteries after use has been raised as a serious problem. Since stored energy must be removed in order to recycle the spent batteries, an effective discharging process is required. In this study, graphite and NCM622 were used as active materials to manufacture coin-type half cells and full cells, and the electrochemical behavior occurring during overdischarge was analyzed. When the positive and negative electrodes are overdischarged respectively using a half-cell, a conversion reaction in which transition metal oxide is reduced to metal occurs first in the positive electrode, and a side reaction in which Cu, the current collector, is corroded following decomposition of the SEI film occurs in the negative electrode. In addition, a side reaction during overdischarge is difficult to occur because a large polarization at the initial stage is required. When the full cell is overdischarged, the cell reaches 0 V and the overdischarge ends with almost no side reaction due to this large polarization. However, if the full cell whose capacity is degraded due to the cycle is overdischarged, corrosion of the Cu current collector occurs in the negative electrode. Therefore, cycled cell requires an appropriate treatment process because its electrochemical behavior during overdischarge is different from that of a fresh cell.

A Study on Particle and Crystal Size Analysis of Lithium Lanthanum Titanate Powder Depending on Synthesis Methods (Sol-Gel & Solid-State reaction) (분말 합성법(Sol-Gel & Solid-State reaction)에 따른 Lithium Lanthanum Titanate 분말의 입자 및 결정 크기 비교 분석에 관한 연구)

  • Jeungjai Yun;Seung-Hwan Lee;So Hyun Baek;Yongbum Kwon;Yoseb Song;Bum Sung Kim;Bin Lee;Rhokyun Kwak;Da-Woon Jeong
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.324-331
    • /
    • 2023
  • Lithium (Li) is a key resource driving the rapid growth of the electric vehicle industry globally, with demand and prices continually on the rise. To address the limited reserves of major lithium sources such as rock and brine, research is underway on seawater Li extraction using electrodialysis and Li-ion selective membranes. Lithium lanthanum titanate (LLTO), an oxide solid electrolyte for all-solid-state batteries, is a promising Li-ion selective membrane. An important factor in enhancing its performance is employing the powder synthesis process. In this study, the LLTO powder is prepared using two synthesis methods: sol-gel reaction (SGR) and solid-state reaction (SSR). Additionally, the powder size and uniformity are compared, which are indices related to membrane performance. X-ray diffraction and scanning electron microscopy are employed for determining characterization, with crystallite size analysis through the full width at half maximum parameter for the powders prepared using the two synthetic methods. The findings reveal that the powder SGR-synthesized powder exhibits smaller and more uniform characteristics (0.68 times smaller crystal size) than its SSR counterpart. This discovery lays the groundwork for optimizing the powder manufacturing process of LLTO membranes, making them more suitable for various applications, including manufacturing high-performance membranes or mass production of membranes.

Graphene Anode Material Technology Patent Trend Analysis for Secondary Battery (이차전지용 그래핀 음극소재 기술 특허 동향 분석)

  • Jae Eun Shin;Junhee Bae
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.661-669
    • /
    • 2022
  • The need for miniaturization, high efficiency, and green energy resources as an energy storage device through the development of various electronic device has emerged. Accordingly, nanomaterials with excellent electrochemical properties, such as graphene and graphene hybrids, are attracting attention as promising materials. In particular, in the electric vehicle industry, cost reduction of secondary batteries is a key factor that can determine the spread of related industries, and it is most important to analyze R&D trends for battery material technology and respond to future technological development directions. Therefore, in this study, we tried to suggest a direction for R&D activities in the future by analyzing patent trends for graphene anode material technology for secondary batteries and deriving implications. As a result, in the case of anode material technology, the proportion of foreigners in the US and European patent markets was higher than in the Korean and Japanese patent markets, which means that the US and European marketability is high. In addition, Japanese applicants are filing high-level applications not only in the Japanese patent market but also in other countries suggests that Japan is leading the technology in this field. Lastly, the proportion of research institutes in the patent market of Korea and the US remains high compared to that of Japan and Europe, indicating that the commercialization of technology is still slow in those countries. Therefore research institutes and companies in Korea will have to establish their own strategies for developing and securing materials using the results of patent trends in major countries and major companies analyzed in this study.