DOI QR코드

DOI QR Code

A Study on the Recycle of Carbon Material in Anode of Secondary Battery

이차전지 음극재 탄소 소재 재활용에 대한 연구

  • Han, Gyoung-Jae (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Yu-Jin (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Yoon, Seong-Jin (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kang, Yu-Jin (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Jang, Min-Hyeok (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Jo, Hyung-Kun (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Cho, Hye-Ryeong (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Seo, Dong-Jin (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Park, Joo-Il (Department of Chemical and Biological Engineering, Hanbat National University)
  • 한경재 (한밭대학교 화학생명공학과) ;
  • 김유진 (한밭대학교 화학생명공학과) ;
  • 윤성진 (한밭대학교 화학생명공학과) ;
  • 강유진 (한밭대학교 화학생명공학과) ;
  • 장민혁 (한밭대학교 화학생명공학과) ;
  • 조형근 (한밭대학교 화학생명공학과) ;
  • 조혜령 (한밭대학교 화학생명공학과) ;
  • 서동진 (한밭대학교 화학생명공학과) ;
  • 박주일 (한밭대학교 화학생명공학과)
  • Received : 2022.10.19
  • Accepted : 2022.11.02
  • Published : 2022.12.30

Abstract

Lithium-ion batteries have greatly expanded along with the mobile phone market, and as the electric vehicle business is activated in earnest, they will attract many people's attention even afterwards. Until now, many people have attracted attention to the recovery of valuable metals inside lithium-ion batteries, but graphite, which is mainly used as an anode material, is also worth recycling. Therefore, in order to recover graphite with high purity and valuable metals, graphite that can be used as an anode material of a secondary battery may be generated again through a regeneration process of purifying and separating graphite from a waste lithium-ion battery and recovering electrical characteristics of graphite. This paper describes the process of converting waste graphite into regenerated graphite and the environmental and economic effects of regenerated graphite.

리튬이온 배터리는 휴대폰 시장과 함께 크게 확대되었고 전기 자동차 사업이 본격적으로 활성화됨에 따라, 이후에도 많은 사람의 관심을 끌게 될 분야이다. 지금까지는 리튬이온 배터리 내부에 있는 유가금속에 대한 회수에 많은 사람이 관심을 끌고 있지만, 음극재로서 주로 활용되는 흑연 또한 재활용가치는 충분하다. 따라서 순도 높은 흑연의 회수와 유가금속의 회수를 함께 하기 위해, 폐 리튬이온 배터리로부터 흑연의 정제 및 분리, 흑연의 전기적 특성을 회복하는 재생과정을 통해 다시금 이차전지의 음극재로써 활용할 수 있는 흑연을 만들어 내는 과정을 가지게 할 것이다. 본 논문에서는 폐 흑연을 재생 흑연으로 바꾸는 과정과 재생 흑연이 가져오는 경제적 효과를 기술한다.

Keywords

Acknowledgement

본 과제(결과물)는 2022년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2021RIS-004)

References

  1. Lai, X., Huang, Y., Gu, H., Deng, C., Han, X., Feng, X. and Zheng, Y., "Turning waste into wealth: A systematic review on echelon utilization and material recycling of retired lithium-ion batteries", Energy Storage Materials, 40, pp. 96~123. (2021). https://doi.org/10.1016/j.ensm.2021.05.010
  2. Lain, M. J., "Recycling of lithium ion cells and batteries", Journal of Power Sources, 97, pp. 736~738. (2001). https://doi.org/10.1016/S0378-7753(01)00600-0
  3. Liu, K., Yang, S., Lai, F., Wang, H., Huang, Y., Zheng, F. and Li, Q., "Innovative Electrochemical Strategy to Recovery of Cathode and Efficient Lithium Leaching from Spent Lithium-Ion Batteries", ACS Applied Energy Materials, 3(5), pp. 4767~4776. (2020). https://doi.org/10.1021/acsaem.0c00395
  4. Li, L., Fan, E., Guan, Y., Zhang, X., Xue, Q., Wei, L. and Chen, R., "Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lactic Acid Leaching System", ACS Sustainable Chemistry & Engineering, 5(6), pp. 5224~5233. (2017). https://doi.org/10.1021/acssuschemeng.7b00571
  5. Rothermel, S., Evertz, M., Kasnatscheew, J., Qi, X., Grutzke, M. and Nowak, S., "Graphite Recycling from Spent Lithium-Ion Batteries", D ChemSusChem, 9(24), pp. 3473~3484. (2016). https://doi.org/10.1002/cssc.201601062
  6. Ruan, D., Wu, L., Wang, F., Du, K., Zhang, Z., Zou, K. and Hu, G., "A low-cost silicon-graphite anode made from recycled graphite of spent lithium-ion batteries", Journal of Electroanalytical Chemistry, 884, p. 115073. (2021). https://doi.org/10.1016/j.jelechem.2021.115073
  7. Badawy, S. M., "Synthesis of High-Quality Graphene Oxide From Spent Mobile Phone Batteries", Environmental Progress & Sustainable Energy, 35(5), pp. 1485~1491. (2016). https://doi.org/10.1002/ep.12362
  8. Liu, J., Shi, H., Hu, X., Geng, Y., Yang, L., Shao, P. and Luo, X., "Critical strategies for recycling process of graphite from spent lithium-ion batteries: A review", Science of The Total Environment, 816, p. 151621. (2021).
  9. He, Y., Zhang, T., Wang, F., Zhang, G., Zhang, W. and Wang, J., "Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation", Journal of Cleaner Production, 143, pp. 319~325. (2017). https://doi.org/10.1016/j.jclepro.2016.12.106
  10. Liu, C., Lin, J., Cao, H., Zhang, Y. and Sun, Z., "Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review", Journal of Cleaner Production, 228(10), pp. 801~813. (2019). https://doi.org/10.1016/j.jclepro.2019.04.304
  11. Zhu, X., Xiao, J., Mao, Q., Zhang, Z., You, Z., Tang, L. and Zhong, Q., "A promising regeneration of waste carbon residue from spent Lithium-ion batteries via low-temperature fluorination roasting and water leaching", Chemical Engineering Journal, 430(1), p. 132703. (2022). https://doi.org/10.1016/j.cej.2021.132703
  12. Yao, Y., Zhu, M., Zhao, Z., Tong, B., Fan, Y. and Hua, Z., "Hydrometallurgical Processes for Recycling Spent Lithium-Ion Batteries: A Critical Review", ACS Sustainable Chemistry & Engineering, 6(11), pp. 13611~13627. (2018). https://doi.org/10.1021/acssuschemeng.8b03545
  13. Xiao, J., Li, J. and Xu, Z., "Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy", Environmental Science & Technology, 51(20), pp. 11960~11966. (2017). https://doi.org/10.1021/acs.est.7b02561
  14. Zhang, G., Ding, L., Yuan, X., He, Y., Wang, H. and He, J., "ecycling of electrode materials from spent lithium-ion battery by pyrolysis-assisted flotation", Journal of Environmental Chemical Engineering, 9(6), p. 106777. (2021). https://doi.org/10.1016/j.jece.2021.106777
  15. Zhan, R., Oldenburg, Z. and Pan, L., "Recovery of active cathode materials from lithium-ion batteries using froth flotation", Sustainable Materials and Technologies, 17, e00062. (2018). https://doi.org/10.1016/j.susmat.2018.e00062
  16. Vieceli, N., Casasola, R., Lombardo, G., Ebin, B. and Petranikova, M., "Hydrometallurgical recycling of EV lithium-ion batteries: Effects of incineration on the leaching efficiency of metals using sulfuric acid", Waste Management, 125, pp. 192~203. (2021). https://doi.org/10.1016/j.wasman.2021.02.039
  17. Santana, I. L., Moreira, T. F. M., Lelis, M. F. F. and Freitas, M. B. J. G., "Photocatalytic properties of Co3O4/LiCoO2 recycled from spent lithium-ion batteries using citric acid as leaching agent", Materials Chemistry and Physics, 190, pp. 38~44. (2017). https://doi.org/10.1016/j.matchemphys.2017.01.003
  18. Yang, K., Gong, P., Tian, Z., Lai, Y. and Li, J., "Recycling spent carbon cathode by a roasting method and its application in Li-ion batteries anodes", Journal of Cleaner Production, 261, p. 121090. (2020). https://doi.org/10.1016/j.jclepro.2020.121090
  19. Barrios, O. C., Gonzalez, Y. C., Barbosa, L. I. and Orosco, P., "Chlorination roasting of the cathode material contained in spent lithium-ion batteries to recover lithium, manganese, nickel and cobalt", Minerals Engineering, 176, p. 107321. (2022). https://doi.org/10.1016/j.mineng.2021.107321
  20. Meng, Y. F., Liang, H. J., Zhao, C. D., Li, W. H., Gu, Z. Y., Yu, M. X. and Wu, X. L., "Concurrent recycling chemistry for cathode/anode in spent graphite/LiFePO4 batteries: Designing a unique cation/anion-co-workable dual-ion battery", Journal of Energy Chemistry, 64, pp. 166~171. (2022). https://doi.org/10.1016/j.jechem.2021.04.047
  21. Jung, H. S., "Optical Analysis of Graphene - Focusing on Raman Spectroscopy", Physics and Advanced Technology, 18(7-8), pp. 20~25. (2009).
  22. Mohammed, A. and Abdullah, A., "Scanning electron microscope (SEM): A review", In Proceedings of the 2018 International Conference on Hydraulics and Pneumatics-HERVEX, Baile Govora, Romania, pp. 7~9. (2018).
  23. Liu, K., Yang, S., Luo, L., Pan, Q., Zhang, P., Huang, Y. and Li, Q., "From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries", Electrochimica Acta, 356, p. 136856. (2020). https://doi.org/10.1016/j.electacta.2020.136856
  24. Winey, M., Meehl, J. B., O'Toole, E. T. and Giddings Jr., T. H., "Conventional transmission electron microscopy", Molecular Biology of the Cell, 25(3), pp. 319~323. (2014). https://doi.org/10.1091/mbc.E12-12-0863
  25. Zhang, L. and Yan, J., "Study on nano-graphitic carbon coating on Si mold insert for precision glass molding", Surface and Coatings Technology, 448, p, 128893. (2022). https://doi.org/10.1016/j.surfcoat.2022.128893
  26. Lin, J. H. and Chen, C. Y., "Thickness-controllable coating on graphite surface as anode materials using glucose-based suspending solutions for lithium-ion battery", Surface and Coating Technology, 436, p. 128270. (2022). https://doi.org/10.1016/j.surfcoat.2022.128270
  27. Gao, Y., Zhang, J., Chen, Y. and Wang, C., "Improvement of the electrochemical performance of spent graphite by asphalt coating", Surfaces and Interfaces, 24, p. 101089. (2021). https://doi.org/10.1016/j.surfin.2021.101089
  28. Du, Z., Li, J., Daniel, C. and Wood III, D. L., "Si alloy/graphite coating design as anode for Li-ion batteries with high volumetric energy density", Electrochimica Acta, 254, pp. 123~129. (2017). https://doi.org/10.1016/j.electacta.2017.09.087
  29. Yun, J., Wang, Y., Gao, T., Zheng, H., Shen, M., Qu, Q. and Zheng, H., "In-situ electrochemical coating of Ag nanoparticles onto graphite electrode with enhanced performance for Li-ion batteries", Electrochimica Acta, 155, pp. 396~401. (2015). https://doi.org/10.1016/j.electacta.2014.12.129
  30. Niu, B., Xiao, J. and Xu, Z., "Advances and challenges in anode graphite recycling from spent lithium-ion batteries", Journal of Hazardous Materials, 439, p. 129678. (2022). https://doi.org/10.1016/j.jhazmat.2022.129678
  31. Gao, Y., Zhang, J., Jin, H., Liang, G., Ma, L., Chen, Y. and Wang, C., "Regenerating spent graphite from scrapped lithium-ion battery by high-temperature treatment", Carbon, 189, pp. 493~502. (2022). https://doi.org/10.1016/j.carbon.2021.12.053
  32. Ali, H., Khan, H. A. and Pecht, M., "Preprocessing of spent lithium-ion batteries for recycling: Need, methods, and trends", Renewable and Sustainable Energy Reviews, 168, p. 112809. (2022). https://doi.org/10.1016/j.rser.2022.112809
  33. Tian, G., Yuan, G., Aleksandrov, A., Zhang, T., Li, Z., Fathollahi-Fard, A. M. and Ivanov, M., "Recycling of spent Lithium-ion Batteries: A comprehensive review for identification of main challenges and future research trends", Sustainable Energy Technologies and Assessments, 53(A), p. 102447. (2022). https://doi.org/10.1016/j.seta.2022.102447
  34. Hsieh, C. C., Lin, Y. G., Chiang, C. L. and Liu, W. R., "Carbon-coated porous Si/C composite anode materials via two-step etching/coating processes for lithium-ion batteries", Ceramics International, 46(17), pp. 26598~26607. (2020). https://doi.org/10.1016/j.ceramint.2020.07.128
  35. Lai, X., Chen, Q., Tang, X., Zhou, Y., Gao, F., Guo, Y. and Zhang. Y., "Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective", eTransportation, 12, p. 100169. (2022). https://doi.org/10.1016/j.etran.2022.100169