• Title/Summary/Keyword: electric resistivity

Search Result 443, Processing Time 0.029 seconds

Analysis of TE Scattering by a Resistive Strip Grating Over a Grounded Dielectric Layer Using Point Matching Method (Point Matching Method를 이용한 접지된 유전체층 위의 저항띠 격자구조에 의한 TE 산란 해석)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.371-375
    • /
    • 2014
  • In this paper, the solutions of TE(transverse electric) scattering problems by a resistive strip grating over a grounded dielectric layer are analyzed by applying the PMM(point matching method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential magnetic field and the induced surface current density on the resistive strip. The induced surface current density of resistive strip is obtained by difference of the up and down of the magnetic field in two boundary areas of the resistive strip. The numerical results for reflected power of zeroth order mode analyzed by according as the resistivity, the width and spacing of resistive strip, the relative permittivity and thickness of dielectric layer, and incident angles. The numerical results shown in good agreement compared to those of the existing papers using FGMM(fourier galerkin moment method).

Solution of TE Scattering by a Resistive Strip Grating Over Grounded Dielectric Multilayers (접지된 다층 유전체위의 저항띠 격자구조에 의한 TE 산란의 해)

  • Yoon Uei-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.913-919
    • /
    • 2006
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating over grounded dielectric multilayers according to the strip width and grating period, the relative permittivity and thickness of dielectric multilayers, and incident angles of a TE plane wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical procedure. The induced surface current density is simply expanded in a Fourier series by using the exponential function as a simple function. Generally, the relected power gets increased according as the relative permittivity and thickness of dielectric multilayers gets increased, the sharp variations of the reflected power are due to resonance effects that take place and were previously called wood's anomallies$^{[7]}$. To verify the validity of the proposed method, the numerical results of normalized reflected power for the uniform resistivity R = 0 as a conductive strip case show in good agreement with those in the existing paper.

Characteristics of Polycrystalline β-SiC Films Deposited by LPCVD with Different Doping Concentration

  • Noh, Sang-Soo;Lee, Eung-Ahn;Fu, Xiaoan;Li, Chen;Mehregany, Mehran
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.245-248
    • /
    • 2005
  • The physical and electrical properties of polycrystalline $\beta$-SiC were studied according to different nitrogen doping concentration. Nitrogen-doped SiC films were deposited by LPCVD(1ow pressure chemical vapor deposition) at $900^{\circ}C$ and 2 torr using $100\%\;H_2SiCl_2$ (35 sccm) and $5 \%\;C_2H_2$ in $H_2$(180 sccm) as the Si and C precursors, and $1\%\;NH_3$ in $H_2$(20-100 sccm) as the dopant source gas. The resistivity of SiC films decreased from $1.466{\Omega}{\cdot}cm$ with $NH_3$ of 20 sccm to $0.0358{\Omega}{\cdot}cm$ with 100 sccm. The surface roughness and crystalline structure of $\beta$-SiC did not depend upon the dopant concentration. The average surface roughness for each sample 19-21 nm and the average surface grain size is 165 nm. The peaks of SiC(111), SiC(220), SiC(311) and SiC(222) appeared in polycrystalline $\beta$-SiC films deposited on $Si/SiO_2$ substrate in XRD(X-ray diffraction) analysis. Resistance of nitrogen-doped SiC films decreased with increasing temperature. The variation of resistance ratio is much bigger in low doping, but the linearity of temperature dependent resistance variation is better in high doping. In case of SiC films deposited with 20 sccm and 100 sccm of $1\%\;NH_3$, the average of TCR(temperature coefficient of resistance) is -3456.1 ppm/$^{\circ}C$ and -1171.5 ppm/$^{\circ}C$, respectively.

Characteristics of Amorphous/Polycrystalline $BaTiO_3$ Double Layer Thin Films with High Performance Prepared New Stacking Method and its Application to AC TFEL Device (새로운 적층방법으로 제조된 고품위 비정질/다결정 $BaTiO_3$ 적층박막의 특성과 교류 구동형 박막 전기 발광소자에의 응용)

  • 송만호;이윤희;한택상;오명환;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.761-768
    • /
    • 1995
  • Double layered BaTiO3 thin films with high dielectric constant as well as good insulating property were prepared for the application to low voltage driving thin film electroluminescent (TFEL) device. BaTiO3 thin films were formed by rf-magnetron sputtering technique. Amorphous and polycrystalline BaTiO3 thin films were deposited at the substrate temperatures of room temperature and 55$0^{\circ}C$, respectively. Two kinds of films prepared under these conditions showed high resistivity and high dielectric constant. The figure of merit (=$\varepsilon$r$\times$Eb.d) of polycrystalline BaTiO3 thin film was very high (8.43$\mu$C/$\textrm{cm}^2$). The polycrystalline BaTiO3 showed a substantial amount of leakage current (I), under the high electric field above 0.5 MV/cm. The double layered BaTiO3 thin film, i.e., amorphous BaTiO3 layer coated polycrystalline BaTiO3 thin film, was prepared by the new stacking method and showed very good dielectric and insulating properties. It showed a high dielectric constant fo 95 and leakage current density of 25 nA/$\textrm{cm}^2$ (0.3MV/cm) with the figure of merit of 20$\mu$C/$\textrm{cm}^2$. The leakage current density in the double layered BaTiO3 was much smaller than that in polycrystalline BaTiO3 under the high electric field. The saturated brightness of the devices using double layered BaTiO3 was about 220cd/$m^2$. Threshold voltage of TFEL devices fabricated on double layered BaTiO3 decreased by 50V compared to the EL devices fabricated on amorphous BaTiO3.

  • PDF

A Study on the Possibility of Construction Supervision by Geophysical Prospecting (지구 물리탐사에 의한 시공감리성 연구)

  • Shon, Ho-Woong
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.165-174
    • /
    • 1997
  • It is not possible to define the earth's interior because of it complicity. However, it can be interpreted directly and/ or indirectly. Geophysics is the subject of this study. To study the possibility of construction supervision by geophysical method, geophysical prospecting was performed and studied at the SamYang pumping well area in Cheju Island, where, although underground dam was constructed, the saline water invade the pumping well area. This study focuses on the construction supervision by electrical measurements. Two electric resistivity survey lines are installed in the pumping well site, and at each line electric survey was conducted at ebb and flow tides. To increase the data quality SP (self-potential) survey was also performed. As a result the geophysical exploration methods explained the defect of construction well, and It shows that geophysical probe can be a useful tool for the construction supervision.

  • PDF

Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of MWCNT-reinforced Polypropylene Nanocomposites (다중벽 탄소나노튜브강화 폴리프로필렌 나노복합재료의 전자파 차폐효과 및 기계적 특성)

  • Yim, Yoon-Ji;Seo, Min-Kang;Kim, Hak-Yong;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.494-499
    • /
    • 2012
  • In this work, the effect of multi-walled carbon nanotube (MWCNT) on electromagnetic interference shielding effectiveness (EMI SE) and mechanical properties of MWCNT-reinforced polypropylene (PP) nanocomposites were investigated with varying MWCNT content from 1 to 10 wt%. Electric resistance was tested using a 4-point-probe electric resistivity tester. The EMI SE of the nanocomposites was evaluated by means of the reflection and adsorption methods. The mechanical properties of the nanocomposites were studied through the critical stress intensity factor ($K_{IC}$) measurement. The morphologies were observed by scanning electron microscopy (SEM). From the results, it was found that the EMI SE was enhanced with increasing MWCNT content, which played a key factor to determine the EMI SE. The $K_{IC}$ value was increased with increasing MWCNT content, whereas the value decreased above 5 wt% MWCNT content. This was probably considered that the MWCNT entangled with each other in PP due to an excess of MWCNT.

A Research Trend on Film Thickness Dependence of Ac High Feld for Low Density Polyethylene (저밀도 폴리에틸렌을 위한 고전계 파형의 필름 두께의존성에 관한 연구 동향)

  • Jung, Sung-Chan;Rho, Jung-Hyun;Lee, Joo-Hong;Hwang, Jong-Sun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1988-1989
    • /
    • 2007
  • Polyethylene is widely used as the insulator for power cable. To investigate the conduction mechanism for power cable insulation under ac high field, it is very important to acquire the dissipation current under actual running field. Recently, we have developed the unique system, which make possible to observe the nonlinear dissipation current waveform. In this system, to observe the nonlinear properties with high accuracy, capacitive current component is canceled by using inverse capacitive current signal instead of using the bridge circuit for canceling it. We have already reported that the dissipation currents of $40\;{\mu}m$ thick LDPE film at 10 kV/mm and over 140 Hz, it starts to show nonlinearity and odd number's harmonics were getting large. To investigate the conduction mechanis ms in this region, especially space charge effect, various kinds of estimation, such as time variations of instantaneous resistivity for one cycle, FFT spectra of dissipation current waveforms and so on, has been examined. As the results of these estimations, it was found that the dissipation current will depend on not only the instantaneous value of electric field but also the time differential of applied electric field due to taking a balance between applied field and internal field. Furthermore, two large peaks of dissipation current for each half cycle were observed under certain condition. In this paper, to clarify the reason why it shows two peaks for each half cycle, the film thickness dependences of dissipation current waveforms were observed by using the three different thickness LDPE films.

  • PDF

A Study on TE Scattering by a Resistive Strip Grating Between a Double Dielectric Layer Using PMM (PMM을 이용한 2중 유전체층 사이의 저항띠 격자구조에 의한 TE 산란에 관한 연구)

  • Yoon, Uei-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.21-26
    • /
    • 2019
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating between a double dielectric layer are analyzed by using the PMM(point matching method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, the scattered electromagnetic fields are expanded in a series of Floquet mode functions, and the resistive boundary condition is applied to analysis of the resistive strip. The numerical results for the normalized reflected and transmitted power are analyzed by according as the width and spacing of resistive strip, the relative permittivity and thickness of the double dielectric layers, incident angles, and uniform resisitivity. Typically, the reflected power for the conductive strip increased as the value of the relative dielectric constant increased, the reflected power for the resistive strip with uniform resistivity decreased as the value of the resisvivity increased. The numerical results for the presented structure of this paper are shown in good agreement compared to those of the existing papers.

Robust 1D inversion of large towed geo-electric array datasets used for hydrogeological studies (수리지질학 연구에 이용되는 대규모 끄는 방식 전기비저항 배열 자료의 1 차원 강력한 역산)

  • Allen, David;Merrick, Noel
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.50-59
    • /
    • 2007
  • The advent of towed geo-electrical array surveying on water and land has resulted in datasets of magnitude approaching that of airborne electromagnetic surveying and most suited to 1D inversion. Robustness and complete automation is essential if processing and reliable interpretation of such data is to be viable. Sharp boundaries such as river beds and the top of saline aquifers must be resolved so use of smoothness constraints must be minimised. Suitable inversion algorithms must intelligently handle low signal-to-noise ratio data if conductive basement, that attenuates signal, is not to be misrepresented. A noise-level aware inversion algorithm that operates with one elastic thickness layer per electrode configuration has been coded. The noise-level aware inversion identifies if conductive basement has attenuated signal levels so that they are below noise level, and models conductive basement where appropriate. Layers in the initial models are distributed to span the effective depths of each of the geo-electric array quadrupoles. The algorithm works optimally on data collected using geo-electric arrays with an approximately exponential distribution of quadrupole effective depths. Inversion of data from arrays with linear electrodes, used to reduce contact resistance, and capacitive-line antennae is plausible. This paper demonstrates the effectiveness of the algorithm using theoretical examples and an example from a salt interception scheme on the Murray River, Australia.

A study on the growth mechanism of rutile single crystal by skull melting method and conditions of RF generator (스컬용융법에 의한 루틸 단결정 성장메커니즘과 RE generator 조건에 관한 연구)

  • Seok jeong-Won;Choi Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.175-181
    • /
    • 2005
  • Ingots of rutile single crystals were grown by the skull melting method, and their characteristics were compared in terms of melt-dwelling time for each melt. The method is based on direct inductive heating of an electrically conducted melt by an alternating RF field, and the heating is performed by absorption of RF energy. $TiO_2$ is an insulator at room temperature but its electric conductivity increases elevated temperature. Therefore, titanium metal ring(outside diameter : 6cm, inside diameter : 4cm, thickness 0.2cm) was embedded into $TiO_2$, powder (anatase phase, CERAC, 3N) for initial RF induction heating. Important factors of the skull melting method are electric resistivity of materials at their melting point, working frequency of RF generator and cold crucible size. In this study, electric resitivity of $TiO_2$, $(10^{-2}\~10^{-1}\;{\Omega}{\cdot}m)$ at its melting point was estimated by compairing the electric resitivities of alumina and zirconia. Inner diameter and height of the cold crucible was 11 and 14cm, respectively, which were determined by considering of the Penetration depth $(0.36\~1.13cm)$ and the frequency of RF generator.