• Title/Summary/Keyword: electric resistance

Search Result 1,437, Processing Time 0.034 seconds

Preparation and Characteristics of Heterogeneous Cation Exchange Membrane : 1. Mixing Ratio of Matrix and Ion Exchange Resin (PE계 불균질 양이온 교환막의 제조와 특성:1.결합제와 이온교환수지의 비율에 따른 영향)

  • Yang, Hyun S.;Cho, Byoung H.;Kang, Bong K.;Lee, Tae W.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1132-1141
    • /
    • 1996
  • Heterogeneous cation exchange membrane(HCEM) was prepared with LLDPE(Linear Low Density Poly-ethylene) as binder, powdered cation exchange resins($diameter{\leq}149{\mu}m$) as ion-exchange material and glycerol as additive for electrodialysis and electrodeionization system. The weight ratio of (binder/ion exchange)/glycerol was (60%/40%)/5%, (55%/45%)/5%, (50%/50%)/5% and (40%/60%)/5%. The characterization of prepared HCEM was evaluated on mechanical, electrochemical, morphology and ion permeable properties. It was compared with commercial membrane. Electrochemical properties of HCEM of (50%/50% )/5% were very similar to value of IONPURE(commercial membrane), in which ion exchange capacity, ion transfer number and membrane resistance were to be 1.733meq/g, 0.96 and $16.08{\Omega}/cm^2$, respectively. Ion permeability of the membrane was better than that of IONPURE membrane. Compared with IONPURE membrane, the HCEM had a higher tensile strength and lower elongation and modulus, in which HCEM had tensile strength of $62.33kg/cm^2$, elongation of 87.42% and modulus of $658.53kg/cm^2$. The HCEM of (50%/50% )15% was optimum combination.

  • PDF

Implementation of Low Frequency Welding Pre-heating System Using Induction Heating (유도가열 기법을 이용한 저주파 용접예열 시스템 구현)

  • Yang, Juyeong;Kim, Soochan;Park, Junmo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • Welding preheating means that the surface of the base material to which the metal is welded before the main welding is heated to a constant temperature. It prevents the cracks of the adjacent influences such as reduction of material hardening degree by controlling the cooling rate, suppression of segregation of impurities, prevention of thermal deformation, and moisture removal. For this reason, it is a necessary operation for high quality welding. Induction heating is an efficient heating method that converts electric energy into heat energy by applying electromagnetic induction phenomenon. Compared with combustion heat generated by gas and liquid, it is clean, stable, and economical as well as rapid heating. It can be heated regardless of the shape, depth and material of the heating body by modifying the shape of the frequency and the coil with a simple structure. In this paper, we implemented a low frequency welding preheating system using induction heating technique and observed the temperature changes of coil resistance, inductance and automotive transmission parts according to the height of each transmission in winding coil for three kinds of automotive transmission parts. We confirmed that the change of current is a very important factor in the low frequency heating.

Evaluation of the Optimal Vertical Stiffness of a Fastener Along a High-speed Ballast Track (고속철도 자갈궤도 체결구 최적 수직강성 평가)

  • Yang, Sin-Choo;Kim, Eun
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.139-148
    • /
    • 2015
  • By increasing the vertical stiffness of the rail fastening system, the dynamic wheel load of the vehicle can be increased on the ballast track, though this increases the cost of track maintenance. On the other hand, the resistance acting on the wheel is decreased, which lowers the cost of the electric power to run the train. For this reason, the determination of the optimal fastener stiffness is important when attempting to minimize the economic costs associated with both track maintenance and energy to operate the train. In this study, a numerical method for evaluating the optimal vertical stiffness of the fasteners used on ballast track is presented on the basis of the process proposed by L$\acute{o}$pez-Pita et al. They used an approximation formula while calculating the dynamic wheel load. The evaluated fastener stiffness is mainly affected by the calculated dynamic wheel load. In this study, the dynamic wheel load is more precisely evaluated with an advanced vehicle-track interaction model. An appropriate range of the stiffness of the fastener applicable to the design of ballast track along domestic high-speed lines is proposed.

Synthesis and Electrochemical Characteristics of Carbon Coated SiOx/ZnO Composites by Sol-gel Method (졸겔법으로 제조한 탄소피복된 SiOx/ZnO 복합체의 합성 및 전기화학적 특성)

  • Baek, Gwang-Yong;Jeong, Sang Mun;Na, Byung-Ki
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.308-315
    • /
    • 2016
  • $SiO_x/ZnO$ composites were prepared from sol-gel method for excellent cycle life characteristics. The composites were coated by PVC as a carbon precursor. ZnO removal to create a void space therein was able to buffer the volume change during charge and discharge. To determine the crystal structure and the shape of the synthesized composite, XRD, SEM, TEM analysis was performed. The carbon contents in the composites were confirmed by TGA. The pore structure and pore size distribution of the composite was measured with the BET specific surface area analysis and BJH pore size distribution. Enhanced electric conductivity by carbon addition was determined from powder resistance measurement. Electrochemical properties were measured with the AC impedance and the charge and discharge cycle life characteristics. When carbon was coated on the $SiO_x/ZnO$ sample, the electrical conductivity and the discharge capacity were increased. After removal of ZnO with HCl the surface area of the sample was increased, but the discharge capacity was decreased. $SiO_x/ZnO$ sample without acarbon coating showed very low discharge capacity, and after carbon coating the sample showed high discharge capacity. For cycle life characteristics, $C-SiO_x/ZnO$ composite (Zn : Si : C = 1 : 1 : 8) with a capacity of $815mAh\;g^{-1}$ at 50 cycle and 0.2 C has higher capacity than existing graphite-based anode materials.

Mixed Carbon/Polypyrrole Electrodes Doped with 2-Naphthalenesulfonic Acid for Supercapacitor (2-Naphthalenesulfonic Acid로 도핑된 혼합카본/폴리피롤을 이용한 Supercapacitor용 전극)

  • Jang, In-Young;Kang, An-Soo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.425-431
    • /
    • 2005
  • New type of supercapacitor using high surface area activated carbons mixed with high conductivity polypyrrole (Ppy) has been prepared in order to achieve low impedance and high energy density. Mixed carbons of BP-20 and MSP-20 were used as the active electrode material, and polypyrrole doped with 2-naphthalenesulfonic acid (2-NSA) and carbon black (Super P) as conducting agents were added to activated carbons in order to enhance good electric conductivity. Electrodes prepared with the activated electrode materials and the conducting agents were added to a solution of organic binder [P(VdF-co-HFP) / NMP]. The ratio of optimum electrode composition was 78 : 17 : 5 wt.% of (MSP20 : BP-20=1 : 1), (Super P : Ppy=10 : 7) and P(VdF-co-HFP) respectively. The performance of unit cell with addition of 7 wt% Ppy have shown specific capacitance of 28.02 F/g, DC-ESR of $1.34{\Omega}$, AC-ESR of $0.36{\Omega}$, specific energy of 19.87 Wh/kg and specific power of 9.77 kW/kg. With addition of Ppy, quick charge-discharge of unit cell was possible because of low ESR, low charge transfer resistance and quick reaction rate. And good stability up to 500 chargedischarge cycles were retained about 80% of their original capacity. It was concluded that the specific capacitance originated highly from compound phenomena of the pseudocapacitance by oxidation-reduction of polypyrrole and the nonfaradaic capacitance by adsorption-desorption of activated carbons.

A study on digital locking device design using detection distance 13.4mm of human body sensing type magnetic field coil (인체 감지형 자기장 코일의 감지거리 13.4mm를 이용한 디지털 잠금장치 설계에 관한 연구)

  • Lee, In-Sang;Song, Je-Ho;Bang, Jun-Ho;Lee, You-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • This study evaluated a digital locking device design using detection distance of 13.4mm of a human body sensing type magnetic field coil. In contrast to digital locking devices that are used nowadays, the existing serial number entering buttons, lighting, number cover, corresponding pcb, exterior case, and data delivery cables have been deleted and are only composed of control ON/OFF power switches and emergency terminals. When the magnetic field coil substrates installed inside the inner case detects the electric resistance delivered from the opposite side of the 12mm interval exterior contacting the glass body part, the corresponding induced current flows. At this time, the magnetic field coil takes the role as a sensor when coil frequency of the circular coil is transformed. The magnetic coil as a sensor detects a change in the oscillation frequency output before and after the body is detected. This is then amplified to larger than 2,000%, transformed into digital signals, and delivered to exclusive software to compare and search for embedded data. The detection time followed by the touch area of the body standard to a $12.8{\emptyset}$ magnetic field coil was 30% contrast at 0.08sec and 80% contrast at 0.03sec, in which the detection distance was 13.4mm, showing the best level.

Improvement of Electron Emission Characteristics and Emission Stability from Metal-coated Carbon Nanotubes (금속 코팅된 탄소나노튜브의 전계 방출 특성 및 신뢰성 향상)

  • Uh, H.S.;Park, S.;Kim, B.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.436-441
    • /
    • 2011
  • Metal coating with several nanometer thickness was applied on the carbon nanotubes (CNTs) in order to improve electron emission characteristics and emission reliability for the potential applications in the area of various electron sources and displays. CNTs were grown on the 2-nm thick Invar (52% Fe, 42% Ni, 6% Co alloy)-catalized Si substrate by using plasma-enhanced chemical vapor deposition at $450^{\circ}C$. In order to reduce the spatial density of densely packed CNTs, as-grown CNTs were partly etched back by $N_2$ plasma and subsequently coated with 5~150 nm thick Ti by a sputtering method. 5 nm thick Ti-coated CNTs produced four times higher emission current density at the electric field of 6 V/${\mu}m$ and much lower emission current fluctuation, compared with the as-grown CNTs. These improved emission properties are mainly due to not only the work function of Ti (4.3 eV) lower than that of pristine CNTs (5 eV), but also lower contact resistance and better adhesion between CNT emitters and substrate accomplished by Ti coating.

Characteristics of Nickel_Titanium Dual-Metal Schottky Contacts Formed by Over-Etching of Field Oxide on Ni/4H-SiC Field Plate Schottky Diode and Improvement of Process (Ni/4H-SiC Field Plate Schottky 다이오드 제작 시 과도 식각에 의해 형성된 Nickel_Titanium 이중 금속 Schottky 접합 특성과 공정 개선 연구)

  • Oh, Myeong-Sook;Lee, Jong-Ho;Kim, Dae-Hwan;Moon, Jeong-Hyun;Yim, Jeong-Hyuk;Lee, Do-Hyun;Kim, Hyeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • Silicon carbide (SiC) is a promising material for power device applications due to its wide band gap (3.26 eV for 4H-SiC), high critical electric field and excellent thermal conductivity. The Schottky barrier diode is the representative high-power device that is currently available commercially. A field plate edge-terminated 4H-SiC was fabricated using a lift-off process for opening the Schottky contacts. In this case, Ni/Ti dual-metal contacts were unintentionally formed at the edge of the Schottky contacts and resulted in the degradation of the electrical properties of the diodes. The breakdown voltage and Schottky barrier height (SBH, ${\Phi}_B$) was 107 V and 0.67 eV, respectively. To form homogeneous single-metal Ni/4H-SiC Schottky contacts, a deposition and etching method was employed, and the electrical properties of the diodes were improved. The modified SBDs showed enhanced electrical properties, as witnessed by a breakdown voltage of 635 V, a Schottky barrier height of ${\Phi}_B$=1.48 eV, an ideality factor of n=1.04 (close to one), a forward voltage drop of $V_F$=1.6 V, a specific on resistance of $R_{on}=2.1m{\Omega}-cm^2$ and a power loss of $P_L=79.6Wcm^{-2}$.

Performance and Charging-Discharging Behavior of AGM Lead Acid Battery according to the Improvement of Bonding between Active Material/Substrate using Sand-Blasting Method (Sand-Blasting법을 이용한 활물질/기판간 결합력 향상에 따른 AGM 연축전지의 성능 및 충방전 거동)

  • Kim, Sung Joon;Lim, Tae Seop;Kim, Bong-Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.75-83
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG (Idling Stop & Go) and charging control systems are applied to HEVs (Hybrid Electric Vehicle) for the purpose of improving fuel economy. These systems require quick charge/discharge performance at high current. To satisfy this characteristic, improvement of the positive electrode plate is studied to improve the charge/discharge process and performance of AGM(Absorbent Glass Mat) lead-acid batteries applied to ISG automotive systems. The bonding between grid and A.M (Active Material) can be improved by applying the Sand-Blasting method to provide roughness to the surface of the positive grid. When the Sand-Blasting method is applied with conditions of ball speed 1,000 rpm and conveyor speed 5 M/min, ideal bonding is achieved between grid and A.M. The positive plate of each condition is applied to the AGM LAB (Absorbent Glass Mat Lead Acid Battery); then, the performance and ISG life characteristics are tested by the vehicle battery test method. In CCA, which evaluates the starting performance at -18 ℃ and 30 ℃ with high current, the advanced AGM LAB improves about 25 %. At 0 ℃ CA (Charge Acceptance), the initial charging current of the advanced AGM LAB increases about 25 %. Improving the bonding between the grid and A.M. by roughening the grid surface improves the flow of current and lowers the resistance, which is considered to have a significant effect on the high current charging/discharging area. In a Standard of Battery Association of Japan (SBA) S0101 test, after 300 A discharge, the voltage of the advanced AGM LAB with the Sand-Blasting method grid was 0.059 V higher than that of untreated grid. As the cycle progresses, the gap widens to 0.13 V at the point of 10,800 cycles. As the bonding between grid and A.M. increases through the Sand Blasting method, the slope of the discharge voltage declines gradually as the cycle progresses, showing excellent battery life characteristics. It is believed that system will exhibit excellent characteristics in the vehicle environment of the ISG system, in which charge/discharge occurs over a short time.

Temperature-compensated Resistivity Probe - Development and Application (온도보상형 전기비저항 프로브 - 개발 및 적용)

  • Jung, Soon-Hyuck;Yoon, Hyung-Koo;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.51-60
    • /
    • 2011
  • Electrical resistivity is applied for understanding details about layers and obtaining basic properties of soils to various measurement devices. The objective of this study is development of TRP(Temperature-compensated Resistivity Probe), analysis about effects of temperature changes during cone penetration test, and observation of characteristics of cone penetration. In order to observation of temperature changes according to a diameter difference of resistivity cone probe, the cone which has wedge type cone tip is made to two types, 2mm and 5mm. Temperature sensor is attached at 15mm below from cone tip because of an electrical interference with elecrical resistance probe. Delectrical connector is used to prevent electric disturbance between motor type penetrating machine and electrical resistivity cone probe. Application tests are carried out in acrylic cell whose diameter is 30cm with uniform Jumunjin sand according to densification caused by blows. The test results indicate that the temperature is increased uniformly during penetration and a tendency, characteristics of cone penetration, is discovered during altering state of soils. This study suggests that the temperature effects and characteristics of penetration should be considered in penetrating tests in order to conduct an accurate ground investigation using TRP(Temperature-compensated Resistivity Probe).