DOI QR코드

DOI QR Code

Temperature-compensated Resistivity Probe - Development and Application

온도보상형 전기비저항 프로브 - 개발 및 적용

  • 정순혁 (고려대학교 건축.사회환경공학과) ;
  • 윤형구 (고려대학교 건축.사회환경공학과) ;
  • 이종섭 (고려대학교 건축.사회환경공학과)
  • Received : 2010.09.13
  • Accepted : 2010.10.06
  • Published : 2011.01.01

Abstract

Electrical resistivity is applied for understanding details about layers and obtaining basic properties of soils to various measurement devices. The objective of this study is development of TRP(Temperature-compensated Resistivity Probe), analysis about effects of temperature changes during cone penetration test, and observation of characteristics of cone penetration. In order to observation of temperature changes according to a diameter difference of resistivity cone probe, the cone which has wedge type cone tip is made to two types, 2mm and 5mm. Temperature sensor is attached at 15mm below from cone tip because of an electrical interference with elecrical resistance probe. Delectrical connector is used to prevent electric disturbance between motor type penetrating machine and electrical resistivity cone probe. Application tests are carried out in acrylic cell whose diameter is 30cm with uniform Jumunjin sand according to densification caused by blows. The test results indicate that the temperature is increased uniformly during penetration and a tendency, characteristics of cone penetration, is discovered during altering state of soils. This study suggests that the temperature effects and characteristics of penetration should be considered in penetrating tests in order to conduct an accurate ground investigation using TRP(Temperature-compensated Resistivity Probe).

전기비저항은 지층의 자세한 이해와 지반의 기본 물성치 획득을 위하여 다양한 측정 장비에 적용되고 있다. 본 연구의 목적은 프로브가 관입되는 동안 온도가 전기비저항에 미치는 영향을 상쇄시켜 보다 정밀한 전기비저항을 평가할 수 있는 온도보상형 전기비저항 프로브(TRP)를 개발하고 적용하는 것이다. 전기비저항 콘의 직경에 따른 온도변화를 분석하기 위하여 두가지 직경(2mm, 5mm)의 콘을 제작하였다. 온도 센서는 전기비저항 프로브와의 전기적 간섭현상을 고려하여 선단부에서 15mm 떨어진 곳에 부착하였다. 또한 모터식 관입기와 전기비저항 프로브 사이의 전기적 교란을 막기 위하여 절연 커넥터를 이용하였다. 직경 30cm의 아크릴 수조에 주문진사를 수중강사법으로 시료를 조성하고 타격에 의해 상대밀도를 증가시키면서 실험을 진행하였다. 실험결과, 관입되는 동안 프로브의 온도가 증가하였으며, 정확한 전기비저항 프로파일을 산정하기 위하여 온도보정이 필요한 것으로 나타났다. 본 연구에서는 온도보상형 전기비저항 프로브(TRP)를 개발하고, 이를 관입실험에 적용하여 정확한 지반조사를 수행하기 위해서는 온도에 대한 영향 및 관입특성을 고려해야 함을 보여준다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단, 한국건설교통기술평가원

References

  1. 김준한, 윤형구, 정순혁, 이종섭(2009a), 4전극 전기비저항 탐사장비의 개발 및 검증, 대한토목학회 논문집, Vol. 29, No. 3c, pp. 127-136.
  2. 김준한, 윤형구, 최용규, 이종섭(2009b), 전기비저항 콘 프로브를 이용한 해안 연약지반의 간극률 평가, 한국지반공학회논문집, Vol. 25, No. 2, pp. 45-54.
  3. Archie, G. E.(1942), The Electrical Resistance Log As an Aid in Determining Some Reservoir Characteristics, Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, Vol. 146, pp. 54-62.
  4. Bemben, S. M. and Myers, H. J.(1974), The Influence of Rate of Penetration on Static Cone Resistance in Connecticut River Valley Varved Clay, Proceedings of the European Symposium on Penetration Testing, Stockholm, Vol. 2, No. 2, pp. 33-34.
  5. Buteau, S., Fortier, R. and Allard, M.(2005), Rate-controlled Cone Penetration Tests in Permafrost, Canadian Geotechnical Journal, Vol. 42, pp. 184-197. https://doi.org/10.1139/t04-093
  6. Campanella, R. G. and Kokan, M. J.(1993), A New Approach to Measuring Dilatancy in Saturated Sands, Geotechnical Testing Journal, ASTM, Vol. 16, No. 4, pp. 485-495. https://doi.org/10.1520/GTJ10288J
  7. Campanella, R. G. and Weemees, I.(1990), Development and Use of an Electrical Resistivity Cone for Groundwater Contamination Studies, Canadian Geotehnical Journal, Vol. 27, pp. 557-567. https://doi.org/10.1139/t90-071
  8. Cho, G. C., Lee, J. S. and Santamarina, J. C.(2004), Spatial Variability in Soils: High Resolution Assessment with Electrical Needle Probe, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 130, No. 8, pp. 843-850. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(843)
  9. De Lima, D. C. and Tumay, M. T.(1991), Scale Effects in Cone Penetration Tests, Proceedings of the Geotechnical Engineering Congress 1991, ASCE, Boulder, Colorado, 1, pp. 38-51.
  10. Ferreira, M. P. and Negrao, J. H.(2006), Effects of Spatial Variability of Earthquake Ground Motion in Cable-stayed Bridges, Structural Engineering and Mechanics, Vol. 23, No. 3, pp. 233-247. https://doi.org/10.12989/sem.2006.23.3.233
  11. Griffiths, D. V. and Fenton, G. A.(2001), Bearing Capacity of Spatially Random Soil: the Undrained Clay Prandtl Problem Revisited, Geotechnique, Vol. 51, No. 4, pp. 351-359. https://doi.org/10.1680/geot.2001.51.4.351
  12. ISSMFE.(1989), International Reference Test Procedure for Cone Penetration Test(CPT), Report of the ISSMFE Technical Committee on Penetration Testing of Soils-TC16, with Reference to Test Procedures, Swedish Geotechnical Institute, Linkoping Information, pp. 6-16.
  13. Jackson, P. D., Taylor-Smith, D. and Stanford, P. N.(1978), Resistivity-porosity-shape Relationships for Marine sands, Geophysics, Vol. 43, No. 6, pp. 1250-1268. https://doi.org/10.1190/1.1440891
  14. Kim, H. K. and Santamarina, J. C.(2008), Spatial Variability: Drained and Undrained Deviatoric Load Response, Geotechnique, Vol. 58, No. 8, pp. 805-814. https://doi.org/10.1680/geot.2008.3724
  15. Kim, J. H., Yoon, H. K. and Lee, J. S.(2010b), Void Ratio Estimation of Seashore Soft Soils by Electrical Resistivity Cone Probe, Journal of Geotechnical and Geoenvironmental Engineering, ASCE(Accepted).
  16. Kim, R., Lee, W., Yoon, H. K. and Lee, J. S.(2010a), Temperature Compensated Cone Penetrometers by Using Fiber Optical Sensors, Geotechnical Testing Journal, ASTM, Vol. 33, No. 3, pp. 1-10.
  17. Kwon, T. H. and Cho, G. C.(2005), Smart Geophysical Characterization of Particulate Materials in a Laboratory, Smart Structures and Systems, Vol. 1, No. 2, pp. 217-233. https://doi.org/10.12989/sss.2005.1.2.217
  18. Lee, J. S. and Santamarina, J. C.(2007), Seismic Monitoring Short-duration Events - liquefaction in 1g Models, Canadian Geotechnical Journal, Vol. 44, No. 6, pp. 659-672. https://doi.org/10.1139/t07-020
  19. Lee, W., Shin, D. S., Yoon, H. K. and Lee, J. S.(2009), Microcone Penetrometer for Tip Resistance and Layer Detection, Geotechnical Testing Journal, ASTM, Vol. 32, No. 4, pp. 358-364.
  20. Luune, T., Eidsmoen, T., Gillespie, D. and Howland, J. D. (1986), Laboratory and Field Evaluation of Cone Penetrometers, Proceedings of the ASCE Specialty Conference In Situ '86: Use of In Situ Testes in Geotechnical Engineering, Blacksburg, pp. 714-729.
  21. Lunne, T., Robertson, P. K. and Powell, J. J. M.(1997), Cone Penetration Testing in Geotechnical Practice, Blakie Academic, Great Britain, London, pp. 1-7.
  22. Nishimura, S. I., Shimada, K. and Fujii, H.(2002), Consolidation Inverse Analysis Considering Spatial Variability and Non-linearity of Soil Parameters, Soils and Foundation, Vol. 42, No. 3, pp. 45-61. https://doi.org/10.3208/sandf.42.3_45
  23. Paice, G. M., Griffiths, D. V. and Fenton G. A.(1996), Finite Element Modeling of Settlements on Spatially Random soil, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 122, No. 9, pp. 777-779. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:9(777)
  24. Post, M. L. and Nebbeling, H.(1995), Uncertainties in Cone Penetration Testing, Proceedings of the International Symposium on Cone Penetration Testing, CPT '95, Linkoping, Sweden, Vol. 2, pp. 73-78.
  25. Santamarina, J. C., Klein, K. A. and Fam, M. A.(2001), Soils and Waves - Particulate Materials Behavior, Characterization and Process Monitoring, Wiley, New York, p. 393.
  26. Swedish Geotechnical Society(1992), Recommended Standard for Cone Penetration Tests, Report 1:93 E.
  27. Zeitoun, D. G. and Baker, R.(1992), A Stochastic Approach for Settlement Predictions of Shallow Foundations, Geotechnique, Vol. 42, No. 4, pp. 617-629. https://doi.org/10.1680/geot.1992.42.4.617
  28. Zuidberg, H. M., Hoope, J. ten and Geise, J. M.(1988), Advances in In-situ Measurements, Proceedings of the 2nd International Symposium on Field Measurements in Geomechnics, Kobe, pp. 279-291.