Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.6.436

Improvement of Electron Emission Characteristics and Emission Stability from Metal-coated Carbon Nanotubes  

Uh, H.S. (Department of Electronics Engineering, Sejong University)
Park, S. (Department of Electronics Engineering, Sejong University)
Kim, B. (Department of Electronics Engineering, Sejong University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.6, 2011 , pp. 436-441 More about this Journal
Abstract
Metal coating with several nanometer thickness was applied on the carbon nanotubes (CNTs) in order to improve electron emission characteristics and emission reliability for the potential applications in the area of various electron sources and displays. CNTs were grown on the 2-nm thick Invar (52% Fe, 42% Ni, 6% Co alloy)-catalized Si substrate by using plasma-enhanced chemical vapor deposition at $450^{\circ}C$. In order to reduce the spatial density of densely packed CNTs, as-grown CNTs were partly etched back by $N_2$ plasma and subsequently coated with 5~150 nm thick Ti by a sputtering method. 5 nm thick Ti-coated CNTs produced four times higher emission current density at the electric field of 6 V/${\mu}m$ and much lower emission current fluctuation, compared with the as-grown CNTs. These improved emission properties are mainly due to not only the work function of Ti (4.3 eV) lower than that of pristine CNTs (5 eV), but also lower contact resistance and better adhesion between CNT emitters and substrate accomplished by Ti coating.
Keywords
Carbon nanotubes; Plasma-enhanced chemical vapor deposition; Field emission; Field emitter; Metal coating;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Y. Song and S. Kang, J. Korean Vaccum Soc. 18, 488 (2009).   DOI
2 J. Kang, D. Kim, J. Jeong, D. Kim, J. Kim, H. Lee, and Y. Song, J. Korean Vaccum Soc. 18, 79 (2009).   DOI
3 C. Zhou, J. Jong, and H. Dai, Appl. Phys. Lett. 76, 1597 (2000).   DOI
4 N. S. Lee, D. S. Chung, J. H. Kang, H. Y. Kim, S. H. Park, Y. W. Jin, Y. S. Choi, I. T. Han, N. S. Park, M. J. Yun, J. E. Jung, C. J. Lee, J. H. You, S. H. Jo, C. G. Lee, and J. M. Kim. Jap, J. Appl. Phys. 39, 7154 (2000).   DOI
5 B. Cichy and A. G. Drzazga, Vacuum 82, 1062 (2008).   DOI
6 R. Y. Zhang, I. Amlani, J. Baker, J. Tresek, and R.K. Tsui, Nano Lett. 3, 731 (2003).   DOI
7 L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. -M. Bonard, and K. Kern, Appl. Phys. Lett. 76, 2071 (2000).   DOI
8 S. Iijima, Nature 354, 56 (1991).   DOI
9 Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig, and R. P. H. Chang, Appl. Phys. Lett. 72, 2912 (1998).   DOI
10 T. Kim, W. Song, Y. Kim, S. Kim, W. Choi, and J. Park, J. Korean Vaccum Soc. 19, 377 (2010).   DOI