• Title/Summary/Keyword: electric power tunnel

검색결과 98건 처리시간 0.025초

전력구 터널 내 전력선 발열 시 환기방식에 따른 온도분포에 대한 전산해석 (Numerical Simulation on the Temperature Distribution by Ventilation Type during Heat of the Power line in Electric Power Tunnel)

  • 이호형;이승철;곽동걸;백두산
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.3-4
    • /
    • 2014
  • Power line in electric power tunnel generate heat around during power transmission. Rising temperature inside the electric power tunnel reduces the transmission efficiency of the power line. In this study, trying to understand the change in temperature in the electric power tunnel by forced ventilation and natural ventilation when the temperature rise of the electric power tunnel. The results show that average temperature in electric power tunnel by natural ventilation, forced ventilation is $56.55^{\circ}C$, $23.25^{\circ}C$. Therefore electric power tunnel during power transmission needs cooling or ventilation system.

  • PDF

전력구 내 전자기파에 대한 작업 환경 측정 (The Measurement of Electromagnetic Wave in Power Cable Tunnel of Underground Utility Tunnel)

  • 강대곤;박재학
    • 한국안전학회지
    • /
    • 제34권1호
    • /
    • pp.1-7
    • /
    • 2019
  • Electromagnetic measurements of the power cable tunnel were conducted from August 10 to 20, 2018, in the ${\bigcirc}{\bigcirc}$ city underground utility tunnel. During this period, the average temperature was $31.89^{\circ}C$ and the humidity was 67.56% in power cable tunnel. As a result of the electromagnetic measurement, the highest electric field was 25.3 V/m and the magnetic flux density was $42.6{\mu}T$. The average electric field was 18.56 V/m and the magnetic flux density was $29.32{\mu}T$ in the power cable tunnel. As a result of comparison with the electric equipment technical standard, the electric field in the power cable tunnel was 0.5% of the electric equipment standard and 35.2% of the magnetic flux density. It's similar value that electric field is about robotic vacuum(15.53 V/m), and magnetic flux density is similar value about capsule- type coffee machine ($23.07{\mu}T$). The number of cable lines and the size of the electromagnetic waves were not proportional to each other through comparison of cable lines in the power cable tunnel. It was confirmed that 154 kV, rather than 22.9 kV, could have a greater influence on occupational.

지하 전력구 터널의 환기시스템 적용에 관한 연구 (II) (A Study for Application Ventilation System of Underground cable Tunnel (II))

  • 김경열;오기대;김대홍;김종환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.778-783
    • /
    • 2008
  • In this paper, numerical method was calculated on evaluation of underground ventilation system to keep servicing a fresh air. The tunnel length for simulation is 18.2 km with various located seven ventilation shaft. Generally, owing to thermal generation in cable tunnel under about 50 m depths, cable tunnel ventilation system is more important than that of other tunnels. So, we conducted that the effects of ventilation systems was simulated depending on the difference of electrical power tunnel length, the number of shaft tunnel, forced ventilation and duct was or not. Test results show that the main conditions in order to enhance the underground cable tunnel are that ventilation systems have to be designed with forced ventilation and with duct.

  • PDF

Estimation of the zone of excavation disturbance around tunnels, using resistivity and acoustic tomography

  • Suzuki Koichi;Nakata Eiji;Minami Masayuki;Hibino Etsuhisa;Tani Tomonori;Sakakibara Jyunichi;Yamada Naouki
    • 지구물리와물리탐사
    • /
    • 제7권1호
    • /
    • pp.62-69
    • /
    • 2004
  • The objective of this study is to estimate the distribution of a zone disturbed by excavation (EDZ) around tunnels that have been excavated at about 500 m depth in pre-Tertiary hard sedimentary rock. One of the most important tasks is to evaluate changes in the dynamic stability and permeability of the rock around the tunnels, by investigating the properties of the rock after the excavation. We performed resistivity and acoustic tomography using two boreholes, 5 m in length, drilled horizontally from the wall of a tunnel in pre-Tertiary hard conglomerate. By these methods, we detected a low-resistivity and low-velocity zone 1 m in thickness around the wall of the tunnel. The resulting profiles were verified by permeability and evaporation tests performed at the same boreholes. This anomalous zone matched a high-permeability zone caused by open fractures. Next, we performed resistivity monitoring along annular survey lines in a tunnel excavated in pre-Tertiary hard shale by a tunnel-boring machine (TBM). We detected anomalous zones in 2D resistivity profiles surrounding the tunnel. A low-resistivity zone 1 m in thickness was detected around the tunnel when one year had passed after the excavation. However, two years later, the resistivity around the tunnel had increased in a portion, about 30 cm in thickness, of this zone. To investigate this change, we studied the relationship between groundwater flow from the surroundings and evaporation from the wall around the tunnel. These features were verified by the relationship between the resistivity and porosity of rocks obtained by laboratory tests on core samples. Furthermore, the profiles matched well with highly permeable zones detected by permeability and evaporation tests at a horizontal borehole drilled near the survey line. We conclude that the anomalous zones in these profiles indicate the EDZ around the tunnel.

부직포 통수능을 고려한 배수형 전력구터널의 라이닝 하중산정 (Assessment of lining load for drainage type cable tunnel considered water-passing capacity of tunnel filter material)

  • 김대홍;김경열;이대수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1369-1376
    • /
    • 2005
  • In case of the drainage type tunnel, the residual water pressure is likely to act on the tunnel lining due to the decrease of water-passing capacity of the filter material. Therefore, this study discussions a method to predict the lining load with the consideration of water passing capacity of the filter material through the literature review and numerical analysis. It is expected from the results of case studies that the design load acting on the concrete lining in the drainage type tunnel could be assumed to be about 50% of the hydrostatic water pressure in steady-state ground-water condition.

  • PDF

Development of Monitoring and Control System of Utility-Pipe Conduit (Power Tunnel) using PLC

  • Lee, Tae-Young;Park, Byung-Seok;Ju, Seong-Ho;You, Dong-Hee;Lim, Yong-Hoon;Song, Seok-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.116-119
    • /
    • 2004
  • The existing monitoring and control systems of utility-pipe conduit (power tunnel, cable tunnel etc) have established communication lines using optical fiber, leaky coaxial cable (LCX), and several kinds of control cable. Due to the properties of the used media, the cost of equipment is considerably high and the maintenance of the system is difficult. Also, the term of carrying out is long so that the extension of the system is in difficulty. Now it is desirable to adopt Power Line Communication (hereinafter, PLC) technology in the monitoring and control systems and use the existing low-voltage power-line for lamplight as communication line. This will lead the reduction of the construction cost and the easy maintenance of the system. In this paper, we research the characteristics of PLC in conduit, design and manufacture the field test system, and analyze the performance of the system by field test. Then, we introduce the reliable monitoring and control system of utility-pipe conduit using PLC.

  • PDF

전기 철도 터널 내 전력설비의 효율적 설계 및 구현 (An Efficient Electric Installation Design and Implementation for Electric Railway Tunnels)

  • 이규대;전정표;김광호
    • 산업기술연구
    • /
    • 제31권B호
    • /
    • pp.23-26
    • /
    • 2011
  • The efficiency and performance of electric facilities in electric railway tunnels are quite important factors for operation and maintenance of railway since most of maintenance works for railways are doing during the night. Specially, in the railways like Gyeong-Chun Line passing through many mountains, many parts of railways are constructed with tunnels. So, this paper proposes the efficient electrical installation design scheme for railway tunnel considering the system performance, economics, and the reliability of power supply to tunnel electric facilities. Finally, the proposed design scheme is implemented to the tunnel design for Gyeong-Chun Line (Electric Railway).

  • PDF

해저 터널 굴진자료 분석을 통한 FPI와 비에너지의 경험식 제시 (Suggestion of empirical formula between FPI and specific energy through analysis of subsea tunnel excavation data)

  • 김경열;배두산;조선아;류희환
    • 한국터널지하공간학회 논문집
    • /
    • 제20권4호
    • /
    • pp.687-699
    • /
    • 2018
  • 해저터널의 시공은 육상터널의 시공과 몇 가지 다른 부분이 존재하는데 지하수 이외에 해수가 존재하여 고수압을 받으며, 시공 중 지반보강이 육상터널보다 매우 어려운 점 등이 대표적이다. 그러므로 해저터널 시공 시 시공트러블 발생의 예방은 매우 중요하다. 본 고에서는 서해안 해저 약 60 m에 시공한 소형 슬러리 TBM의 굴진 성능을 분석하기 위하여 대상 지반의 지질학적 특성들과 기계적 특성들을 DB로 구축하였다. 구축한 DB 중 추력, 토크 및 RPM 등이 순굴진율에 주는 영향을 확인하고자 각 변수들 간의 상관분석을 실시하였다. 또한 구축된 DB로부터 비에너지와 FPI와의 상관관계를 분석하고 순 굴진율을 예측할 수 있는 경험식을 제시하였다.

암반 앵커기초로 시공된 송전철탑 구조물의 거동특성에 관한 연구 (Behavior of Electric Transmission Tower with Rock Anchor Foundation)

  • 김경열;홍성연;이대수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.605-614
    • /
    • 2010
  • In this paper, the initial behavior of transmission tower was analyzed. This tower was firstly constructed by rock anchor foundation in domestic 154 kV transmission line and wireless real-time monitoring system was installed to obtain the measured data for analysis of the structure behavior. For this purpose, 16 strain gauges was installed in anchors of foundation and strain gauges, clinometers, anemoscope and settlement sensors was installed at superstructure. As the results, the main factor which influence the behavior of superstructure is wind velocity, wind direction, rainfall and temperature change. Especially, the uplift load at stub of transmission structure revealed about 35.4 percentages of design load. Hereafter the long term stability will be analyzed.

  • PDF

지중송전케이블의 방화대책 (The fire Prevention measures of the underground transmission line)

  • 곽방명;탁의균;김재승
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.501-503
    • /
    • 2001
  • Electric power consumption is highly increasing as the social trend requiring comfortable life, the population in a big city and the industrial development. Therefore it has become to be very important to supply the stable high-quality power. As these trend, the underground power transmission facility is highly increasing in the center of a city. As the proportion to increase facility in tunnel, the fire prevention measures of the underground transmission line become very important.

  • PDF