• Title/Summary/Keyword: electric potential

Search Result 1,352, Processing Time 0.026 seconds

Assessment of Wind Power Resources for Rural Green-village Planning (농촌 그린빌리지 계획을 위한 풍력에너지 자원분석)

  • Nam, Sang-Woon;Kim, Dae-Sik
    • Journal of Korean Society of Rural Planning
    • /
    • v.14 no.2
    • /
    • pp.25-32
    • /
    • 2008
  • Wind energy, which is one of renewable energy, would be useful resources that can be applied to making energy recycling villages without using fossil fuels. This study analyzed energy potential on wind power considering weather condition in three rural villages and compared with energy consumption surveyed. A wind turbine system in the 5kW class can generate 26.1%, 73.9% and 39.5% of the yearly mean consumption of electric power per house in Makhyun, Boojang and Soso respectively. A 750kW wind turbine system can generate 1.7%, 30.3% and 22.1% of the total amount of electric power consumption in three study villages respectively. Wind power energy density was too low in Makhyun and Soso, so it is determined that the application of wind turbine system is almost impossible. Wind energy potential was generally low in Boojang either, but it is evaluated that there is a little possibility of wind power generation relatively. For practical application of renewable energy to rural green-village planning, assessment of energy potential for the local area should be preceded.

Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.493-519
    • /
    • 2018
  • This article presents a finite element (FE) model to assess the free vibration and static response of a functionally graded skew magneto-electro-elastic (FGSMEE) plate. Through the thickness material grading of FGSMEE plate is achieved using power law distribution. The coupled constitutive equations along with the total potential energy approach are used to develop the FE model of FGSMEE plate. The transformation matrix is utilized in bringing out the element matrix corresponding to the global axis to a local axis along the skew edges to specify proper boundary conditions. The effect of skew angle on the natural frequency of an FGSMEE plate is analysed. Further, the study includes the evaluation of the static behavior of FGSMEE plate for various skew angles. The influence of skew angle on the primary quantities such as displacements, electric potential, and magnetic potential, and secondary quantities such as stresses, electric displacement and magnetic induction is studied in detail. In addition, the effect of power-law gradient, thickness ratio, boundary conditions and aspect ratio on the free vibration and static response characteristics of FGSMEE plate has been investigated.

On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells

  • Asrari, Reza;Ebrahimi, Farzad;Kheirikhah, Mohammad Mahdi
    • Advances in nano research
    • /
    • v.9 no.1
    • /
    • pp.33-45
    • /
    • 2020
  • Geometrically nonlinear buckling of functionally graded magneto-electro-elastic (FG-MEE) nanoshells with the use of classical shell theory and nonlocal strain gradient theory (NSGT) has been analyzed in present research. Mathematical formulation based on NSGT gives two scale coefficients for simultaneous description of structural stiffness reduction and increment. Functional gradation of material properties is described based on power-law formulation. The nanoshell is under a multi-physical field related to applied voltage, magnetic potential, and mechanical load. Exerting a strong electric voltage, magnetic potential or mechanical load may lead to buckling of nanoshell. Taking into account geometric nonlinearity effects after buckling, the behavior of nanoshell in post-buckling regime can be analyzed. Nonlinear governing equations are reduced to ordinary equations utilizing Galerkin's approach and post-buckling curves are obtained based on an analytical procedure. It will be shown that post-buckling curves are dependent on nonlocal/strain gradient parameters, electric voltage magnitude and sign, magnetic potential magnitude and sign and material gradation exponent.

Analysis of Electrostatic Field and Potential Distributions in Conductor-Backed Coupled Coplanar Waveguide Using Conformal Mapping Method (등각사상방법을 이용한 도체로 보강된 결합 도파 선로의 정전기장과 전위 분포 해석)

  • Yoo, Tae-Hoon;Han, Ki-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.35-42
    • /
    • 2010
  • We use conformal mapping method to derive the analytical expressions for calculating electrostatic fields and electric potentials surrounding the conductor-backed coupled coplanar waveguide(CBCCPW) structure. Using the derived expressions, the electrostatic fields and potentials are computed at various points of the CBCCPW's geometry and the field and potential distributions are analyzed. The proposed method provides a faster and simpler calculation of the field distributions than the full-wave analysis method because no iterations are required. This method can be widely applied to the analysis of microwave integrated circuits using coupled line, such as coupler, filter, and microstrip antenna.

Triple Material Surrounding Gate (TMSG) Nanoscale Tunnel FET-Analytical Modeling and Simulation

  • Vanitha, P.;Balamurugan, N.B.;Priya, G. Lakshmi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.585-593
    • /
    • 2015
  • In the nanoscale regime, many multigate devices are explored to reduce their size further and to enhance their performance. In this paper, design of a novel device called, Triple Material Surrounding Gate Tunnel Field effect transistor (TMSGTFET) has been developed and proposed. The advantages of surrounding gate and tunnel FET are combined to form a new structure. The gate material surrounding the device is replaced by three gate materials of different work functions in order to curb the short channel effects. A 2-D analytical modeling of the surface potential, lateral electric field, vertical electric field and drain current of the device is done, and the results are discussed. A step up potential profile is obtained which screens the drain potential, thus reducing the drain control over the channel. This results in appreciable diminishing of short channel effects and hot carrier effects. The proposed model also shows improved ON current. The excellent device characteristics predicted by the model are validated using TCAD simulation, thus ensuring the accuracy of our model.

Response Properties of Acupuncture Stimulation by Meridian Electrical Potential Measurement (침구경략전위 측정에 의한 침 자극 반응 특성)

  • Ryu, Yeon-Hang;Jung, Byung-Jo;Lee, Yong-Heum
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.5
    • /
    • pp.408-413
    • /
    • 2008
  • Human body has a complete left and right symmetry structure, and the left and right balance by Yin and Yang. When the balance is broken, the left and right Meridian becomes abnormal condition. Acupuncture is a kind of therapy to recover from energy unbalance of the left and right Meridian to a new balance condition. In the study, we observed the electric potential along the stomach meridian (ST) in order to verify the energy consensus phenomenon by transportation of bio-energy between operator and subject during acupuncture. The acupuncture effects on opposite meridian site were investigated by comparing the electric potentials between the right and left ST sites. Meridian electrical potentials (MEPs) between operator and subject were simultaneously generated during the acupuncture and the polarity of MEPs was opposite. The results might imply the bio-energy transportation between operator and subject. In addition, we observed three different patterns of MEPs on both ST sites which might represent the condition of the related meridians because meridians in the body are organically interconnected.

Treatment of ETA wastewater using GAC as particle electrodes in three-dimensional electrode reactor (활성탄 충진 3D 복극전기분해조를 이용한 ETA 처리)

  • Kim, Ran;Kim, Yu-Jin;Shin, Ja-Won;Kim, Jeong-Joo;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.241-249
    • /
    • 2013
  • Ethanolamine (ETA) is widely used for alkalinization of water in steam cycles of nuclear power plants with pressurized water reactor. When ETA contained wastewater was released, it could increase COD and T-N. The treatment of the COD and T-N from ETA wastewater was investigated using the GAC as particle electrodes in three-dimensional electrode reactor (TDE). This study evaluated the effectiveness of GAC as particle electrode using different packing ratio at 300 V. The results showed that GAC-TDE could reduce ETA much more efficiently than ZVI-TDE at the mass ratio of GAC to insulator, 1:2. Additionally, The effect of applied electric potential to COD and T-N reduction was investigated. The results showed the high COD, T-N reduction and current efficiency at the low electric potential. Using the GAC-TDE will provide a better ETA reduction with reducing electrical potential dissipation.

Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT

  • Mohammadimehr, Mehdi;Rostami, Rasoul;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.513-543
    • /
    • 2016
  • Third order shear deformation theory is used to evaluate electro-elastic solution of a sandwich plate with considering functionally graded (FG) core and composite face sheets made of piezoelectric layers. The plate is resting on the Pasternak foundation and subjected to normal pressure. Short circuited condition is applied on the top and bottom of piezoelectric layers. The governing differential equations of the system can be derived using Hamilton's principle and Maxwell's equation. The Navier's type solution for a sandwich rectangular thick plate with all edges simply supported is used. The numerical results are presented in terms of varying the parameters of the problem such as two elastic foundation parameters, thickness ratio ($h_p/2h$), and power law index on the dimensionless deflection, critical buckling load, electric potential function, and the natural frequency of sandwich rectangular thick plate. The results show that the dimensionless natural frequency and critical buckling load diminish with an increase in the power law index, and vice versa for dimensionless deflection and electrical potential function, because of the sandwich thick plate with considering FG core becomes more flexible; while these results are reverse for thickness ratio.

Essential oil impregnation into graphene sponges with electric desorption control

  • Mendez, Jose Antonio Cabello;Bueno, Jose de Jesus Perez;Valencia, Jorge Ivan Mendoza;Soto, Jonathan Soto;Lopez, Maria Luisa Mendoza;Guerrero, Mizraim Uriel Flores
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.629-638
    • /
    • 2022
  • This work shows the impregnation of scents using a graphene sponge (GS). This was functionalized by the modified Hummers method, pursuing to add different functional groups. It is proposed to achieve the release and seek to control it through electrical potential applied to the graphene sponge with essential oils. The graphene sponge was functionalized and steeped with two kinds of oil. The electrochemical study demonstrates the variation in the electrochemical behaviour of the functionalized graphene sponge without and impregnated with oil. The release of the oil and its aromatic scents was carried out by applying an electrical potential of 30 V, with a release rate of 1.86 mg/min. The heating of the sample that causes the release of oil, associated with the electrical resistance of the system, reaches temperatures of about 150℃. The essential oils, graphene sponge, surfactant, graphene sponge with essential oils, graphene sponge recuperated after applying electric potential, graphene sponge recovered by temperature and dipropylene glycol (DPG) were characterized using Fourier transformed infrared spectroscopy (FTIR), digital microscopy, and x-ray photoelectron spectroscopy (XPS).

A Finite Element Analysis on the Influence of Floating Shield of a Vacuum Interrupter to the Insulation (진공 인터럽터의 차폐판이 절연에 미치는 영향의 유한요소해석)

  • 최승길;심재학;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.113-116
    • /
    • 1998
  • This study should investigate to what extent the electric field of a vacuum interrupter might be influenced by the electric potential of floating arc shield. The electric potentials of floating shield and electric fields of a vacuum interrupter are analysed by a finite element method against variation of gap distances from 1mm to 12mm. The electric potentials of floating shield was increased with the gap distance, which is because the relative position of shield is closer to fixed contact so that the capacitance distribution inside interrupter is varied. The calculated results show that the maximum value of electric field of a vacuum interrupter with floating shield is nearly same to that without shield at shorter gap distance(below 5mm), however at larger gaps a significant increment of electric field is achieved in interrupter with shield companying with model without shield, which is due to the influence of charged floating shield.

  • PDF