• Title/Summary/Keyword: electric conductor

Search Result 351, Processing Time 0.028 seconds

Characteristic Analysis on Radio Propagation Path Loss Characteristics of Vertical Electric Dipole in Time Domain (시간영역에서 수직 다이폴의 전파경로손실 특성 해석)

  • Hong, Ic-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1558-1563
    • /
    • 2013
  • In this paper, we analyze the radio propagation path loss characteristics for the vertical electric dipole radiation over the perfect electric conductor(PEC) ground plane. Most research have been performed about the electromagnetic analysis of vertical electric dipole in free space for time domain or frequency domain. But this paper present the radio propagation path loss over PEC ground plane in time domain under the assumption of the vertical electric dipole as a base station. From the simulated results, the ground plane effect can change the location of near field from transmitting antenna and the transient responses at mobile are calculated. The results of this paper can be applied to surface radar or signal processing applications.

Effect of Conducting Composite on Characteristics of Electric Double Layer Capacitor (전기이중층 캐패시터의 특성에 미치는 혼성 도전재의 영향)

  • Kim, Ick-Jun;Lee, Sun-Young;Do, Chil-Hoon;Moon, Seong-In;Choi, Sung-Ok;Son, Young-Mo;Kim, Kyung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1140-1143
    • /
    • 2002
  • This work describes the effect of conducting composite on the characteristics of electric double layer capacitor. The cell, which was fabricated with conducting composite consisted of 50 wt.% of SPB and 50 wt.% of VGCF, exhibits the higher specific capacitance, the lower resistance and the better rate capability than those of the cells fabricated with each single electronic conductor. These enhanced properties could be related with the dense structure of electrode.

  • PDF

Methodology of Parallel Ground Conductor Installation on Underground Transmission System (지중송전 시스템의 병행지선 설치 방안 연구)

  • Hong, Dong-Suk;Park, Sung-Min;Hahn, Kwayng-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.470-471
    • /
    • 2008
  • SVL is installed at underground transmission system to protect cables and insulation joint-box from overvoltages caused by lightning, switching, and line-to-ground fault. Domestic underground power system adopts cross bonding type to reduce the induced voltage at sheath, but single-point bonding is required depending the system installation configuration. SVL can be easily broken by overvoltages induced at joint-box because single-point bonding has uneffective system structure to extract fault current. ANSI/IEEE recommends Parallel Ground Continuity Conductor(PGCC) to prevent SVL breakdown. In this paper, EMTP simulation is performed to analyze effects on SVL under PGCC installation when single-line-to-ground fault occurs. The result shows that PGCC and short single-point bonding distance can reduce overvoltages at SVL.

  • PDF

Effect of motion path of downburst on wind-induced conductor swing in transmission line

  • Lou, Wenjuan;Wang, Jiawei;Chen, Yong;Lv, Zhongbin;Lu, Ming
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.211-229
    • /
    • 2016
  • In recent years, the frequency and duration of supply interruption in electric power transmission system due to flashover increase yearly in China. Flashover is usually associated with inadequate electric clearance and often takes place in extreme weathers, such as downbursts, typhoons and hurricanes. The present study focuses on the wind-induced oscillation of conductor during the process when a downburst is passing by or across a specified transmission line. Based on a revised analytical model recently developed for stationary downburst, transient three-dimensional wind fields of moving downbursts are successfully simulated. In the simulations, the downbursts travel along various motion paths according to the certain initial locations and directions of motion assumed in advance. Then, an eight-span section, extracted from a practical 500 kV ultra-high-voltage transmission line, is chosen. After performing a non-linear transient analysis, the transient displacements of the conductors could be obtained. Also, an extensive study on suspension insulator strings' rotation angles is conducted, and the electric clearances at different strings could be compared directly. The results show that both the variation trends of the transient responses and the corresponding peak values vary seriously with the motion paths of downburst. Accordingly, the location of the specified string, which is in the most disadvantageous situation along the studied line section, is picked out. And a representative motion path is concluded for reference in the calculation of each string's oscillation for the precaution of wind-induced flashover under downburst.

Fabrication of coated conductor stacked multi-filamentary wire (적층형 초전도 다심 선재 제조)

  • Yun, K.S.;Ha, H.S.;Oh, S.S.;Moon, S.H.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.4-7
    • /
    • 2012
  • Coated conductors have been developed to increase piece length and critical current for electric power applications. Otherwise, Many efforts were carried out to reduce AC loss of coated conductor for AC applications. Twisting and cabling processes are effective to reduce AC loss but, these processes can not be applied for tape shaped coated conductor. It is inevitable to have thin rectangular shape because coated conductor is fabricated by thin film deposition process on metal substrate. In this study, round shape superconducting wire was first fabricated using coated conductors. First of all, Ag coated conductor was used. coated conductor was slitted to several wires with narrow width below 1mm. 12ea slitted wires were parallel stacked on top of another until making up the square cross-section. The bundle of coated conductors was heat treated to stick on each other by diffusion bonding and then copper plated to make round shape wire. Critical current of round wire was measured 185A at 77K, self field.

Effect of ceramic powder addition on the insulating properties of polymer layer prepared by dip coating method

  • Kim, S.Y.;Lee, J.B.;Kwon, B.G.;Hong, G.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • The mechanical, electrical and thermal characteristics of insulating materials may significantly affect the performance and reliability of electrical devices using superconductors. General method to provide insulating layer between coated conductors is wrapping coated conductor with Kapton tape. But uniform and compact wrapping without failure or delamination in whole coverage for long length conductor is not a simple task and need careful control. Coating of insulating layer directly on coated conductor is desirable for providing compact insulating layer rather than wrapping insulating layers around conductor. Ceramic added polymer has been widely used as an insulating material for electric machine because of its good electrical insulating properties as well as excellent heat resistance and fairy good mechanical properties. The insulating layer of coated conductor should have high breakdown voltage and possesses suitable mechanical strength and maintain adhesiveness at the cryogenic temperature where it is used and withstand stress from thermal cycling. The insulating and mechanical properties of polymer can be improved by adding functional filler. In this study, insulating layer has been made by adding ceramic particles such as $SiO_2$ to a polymer resin. The size, amount and morphology of added ceramic powder was controlled and their effect on dielectric property of the final composite was measured and discussed for optimum composite fabrication.

Aerodynamic force characteristics and galloping analysis of iced bundled conductors

  • Lou, Wenjuan;Lv, Jiang;Huang, M.F.;Yang, Lun;Yan, Dong
    • Wind and Structures
    • /
    • v.18 no.2
    • /
    • pp.135-154
    • /
    • 2014
  • Aerodynamic characteristics of crescent and D-shape bundled conductors were measured by high frequency force balance technique in the wind tunnel. The drag and lift coefficients of each sub-conductor and the whole bundled conductors were presented under various attack angles of wind. The galloping possibility of bundled conductors is discussed based on the Den Hartog criterion. The influence of icing thickness, initial ice accretion angle and sub-conductor on the aerodynamic properties were investigated. Based on the measured aerodynamic force coefficients, a computationally efficient finite element method is also implemented to analyze galloping of iced bundled conductors. The analysis results show that each sub-conductor of the bundled conductor has its own galloping feature due to the use of aerodynamic forces measured separately for every single sub-conductors.

Analysis of Distribution Power System with Thermal Conductor Distribution Lines (내열 도체가 적용된 가공 배전선의 적용 영향에 관한 연구)

  • Kim, Myong-Hyon;Lee, Kyone-Tae;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.243-244
    • /
    • 2015
  • Power system has been improved during for a long time by customers demand. Power suppliers has researched the power system component for more electricity transmission. One of the research is apply the thermal conductors in new cable. The operational temperature of thermal conductors is higher than normal aluminum that thermal conductor is composed of aluminum, Zr(zirconium) and etc. Increase of operational temperature is growth of the transmission capability. Power suppliers was concerned about the increase of operation temperature by thermal conductors. Therefore, the thermal conductor has the possibility that expanded application in power system. In this paper analysed effect of thermal conductor in power distribution system.

  • PDF

The Finite Element Analysis and the Optimum Geometric Design of Linear Motor

  • Lee Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.73-77
    • /
    • 2005
  • Linear motor has been considered to be the most suitable electric machine for linear control with high speed and high precision. Thrust of linear motor is one of the important factors to specify motor performance. Maximum thrust can be obtained by increasing the magnitude of current in conductor and is relative to the sizes of conductor and magnet. However, the magnitude of current and the size of conductor have an effect on temperature of linear motor. Therefore, it is practically important to find optimum design that can effectively maximize thrust of linear motor within limited range of temperature. Finite element analysis was applied to calculate thrust and numerical solutions were compared with experiments. The temperature of the conductor was calculated from the experimentally determined thermal resistance. The ADPL of ANSYS was used for the optimum design process, which is commercial finite element analysis software. Design variables and constraints were chosen based on manufacturing feasibility and existing products. As a result, it is shown that temperature of linear motor plays an important role in determining optimum design.

Characteristic Analysis of HTS EDS System with Various Ground Conductors

  • Bae, Duck-Kweon;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.2
    • /
    • pp.21-24
    • /
    • 2010
  • This paper deals with numerical analysis on a high-$T_c$ superconducting (HTS) electrodynamic suspension (EDS) simulator according to the variation of the ground conductor conditions. Because the levitation force of EDS system is formed by the magnetic reaction between moving magnets and fixed ground conductors, the distribution of the magnetic flux on a ground conductor plays an important role in the determining of the levitation force level. The possible way to analyze HTS EDS system was implemented with 3D finite element method (FEM) tool. A plate type ground conductor generated stronger levitation force than ring type ground conductor. Although the outer diameter of Ring3 (335 mm) was larger than that of Ring2 (235 mm), the levitation force by Ring2 was stronger than that by Ring3. Considering the results of this paper, it is recommended that the magnetic flux distribution according to the levitation height and magnet current should be taken into account in the design of the ground conductors.