• Title/Summary/Keyword: electric braking

Search Result 216, Processing Time 0.033 seconds

A study on Characteristics of Disc Brake of & Technology of Brake Control System in High Speed Railway (고속차량용 디스크 제동 특성 및 제동제어 방법기술에 대한 연구)

  • Shin Y.J;Choi K.J.;Gwak J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.393-397
    • /
    • 2005
  • Since the braking system of rolling stock is directly linked to it's safety, ensuring reliability of braking system and evaluation of performance of it are very important. To develope the performance of braking system, it is required advanced technology and gradually various factors in the field test result. This study is designed to analyze the air pressure control about braking force in rolling stock, also, by comparing braking force of high speed railway with that of high speed train. This paper suggests to establish a method of computation of braking force form the air pressure control. And The high speed train researches into patterns of braking system such as the train of speed up and introduction of electric and pneumatic braking system.

  • PDF

Design and Analysis of High-Speed Unmanned Aerial Vehicle Ground Directional Rectifying Control System

  • Yin, Qiaozhi;Nie, Hong;Wei, Xiaohui;Xu, Kui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.623-640
    • /
    • 2017
  • The full nonlinear equations of an unmanned aerial vehicle ground taxiing mathematical dynamic model are built based on a type of unmanned aerial vehicle data in LMS Virtual.Lab Motion. The flexible landing gear model is considered to make the aircraft ground motion more accurate. The electric braking control system is established in MATLAB/Simulink and the experiment of it verifies that the electric braking model with the pressure sensor is fitted well with the actual braking mechanism and it ensures the braking response speediness. The direction rectification control law combining the differential brake and the rudder with 30% anti-skid brake is built to improve the directional stability. Two other rectifying control laws are demonstrated to compare with the designed control law to verify that the designed control is of high directional stability and high braking efficiency. The lateral displacement increases by 445.45% with poor rectification performance under the only rudder rectifying control relative to the designed control law. The braking distance rises by 36m and the braking frequency increases by 85.71% under the control law without anti-skid brake. Different landing conditions are simulated to verify the good robustness of the designed rectifying control.

Performance Evaluation of Regenerative Braking System Based on a HESS in Extended Range BEV

  • Kiddee, Kunagone;Khan-Ngern, Werachet
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1965-1977
    • /
    • 2018
  • This paper proposed a regenerative braking system (RBS) strategy for battery electric vehicles (BEVs) with a hybrid energy storage system (HESS) driven by a brushless DC (BLDC) motor. In the regenerative braking mode of BEV, the BLDC motor works as a generator. Consequently, the DC-link voltage is boosted and regenerative braking energy is transferred to a battery and/or ultracapacitor (UC) using a suitable switching pattern of the three-phase inverter. The energy stored in the HESS through reverse current flow can be exploited to improve acceleration and maintain the batteries from frequent deep discharging during high power mode. In addition, the artificial neural network (ANN)-based RBS control mechanism was utilized to optimize the switching scheme of the vehicular breaking force distribution. Furthermore, constant torque braking can be regulated using a PI controller. Different simulation and experiments were implemented and carried out to verify the performance of the proposed RBS strategy. The UC/battery RBS also contributed to improved vehicle acceleration and extended range BEVs.

Analysis of braking characteristics of electric multiple unit for train control system (열차제어시스템을 위한 전동차 제동특성 분석)

  • Choi, Don Bum;Oh, Sehchan;Kim, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.887-895
    • /
    • 2018
  • This paper presents a braking model that can be used to design the safety distance of a train control system and a train braking system to increase the volume of traffic. For the braking model, a train set (electric multiple unit composed 6 cars) was tested. The factors that can affect the braking characteristics include the friction coefficient, braking pressure, and regenerative braking. The braking pressure was classified into service and emergency braking and reflected the characteristics of the vehicle. The external force acting on the running railway car was tested in accordance with KS R 9217, and the running resistance of the train is presented in the form of a polynomial. The dynamic behavior of the train running on a straight flat line was simulated using UM 8.3. The results were validated with experimental data, and the results were reasonable. With the validated model, a stopping distance was determined according to the initial braking speed and compared with the deceleration braking model. In addition, a safety distance for the train control system could be changed according to the frictional coefficient limits. These results are expected to be useful for analyzing the dynamic behavior of trains, and for analyzing various railway environments and improving the braking performance.

A Study on Application of Pure Electric Braking System for Urban Transit System (도시철도시스템을 위한 완전전기제동시스템 적용에 관한 연구)

  • Lee, Han-Min;Kim, Gil-Dong;Oh, Seh-Chan;Lee, Chang-Mu;Park, Sung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.263-265
    • /
    • 2006
  • The pure electric braking system need to be developed to stop the electric train to zero speed by electricity. This system has advantages like reduction of weight, maintenance cost, noise, and dust generated by disk friction. Therefore, we will study this system for Korean urban transit system.

  • PDF

A study on Test and Evaluation & Technology of Brake Control System in High Speed Railway (고속철도 제동제어 시험평가기술 방법에 대한 연구)

  • Shin Yu-Jeong;Choi Kyung-Jin
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.103-108
    • /
    • 2005
  • Since the braking system of rolling stock is directly linked to it's safety, ensuring reliability of braking system and evaluation of performance of it are very important. To develope the performance of braking system, it is required advanced technology and gradually various factors in the field test result. This study is designed to analyze the air pressure control about braking force in rolling stock, also, by comparing braking force of KTX with that of high speed train. This paper suggests to establish a method of computation of braking force form the air pressure control. And The high speed train researches into patterns of braking system such as the train of speed up and introduction of electric and pneumatic braking system.

  • PDF

Full Electric Vehicle Power System simulation with regenerative braking (회생 제동을 사용하는 전기자동차 시스템 구성 설계)

  • Jin, Young-Goun;Kim, Eou-Jung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.365-368
    • /
    • 2010
  • Full Electric Vehicle needs regenerative braking system by it's limitation of energy storage capacity. In this study, we suggest the system trade-off strategy between regenerative braking system with ultra capacitor and vichile enegry efficency. Simulation with the UDDS scheduling show the relations of energy storage sizing, efficiency of regenerative braking system and ultra capacitor sizing.

  • PDF

Design of Deceleration Controller for Air Braking System (공기제동 시스템의 감속도 제어기 설계)

  • Lee K. K.;Kim W. K.;Kim M. Y.;Yoon S. C.;Baik K. S.
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.696-701
    • /
    • 2004
  • Electric vehicle that is manufactured present by development of electric vehicle technology were available automatic driving. Control of air breaking system for precision stopping is important at automatic driving. Current Electric vehicle is doing precision stopping using braking force control. Braking force control is difficult to take static deceleration by rail condition or change of friction coefficient. Therefore, Proposed the controller in this study is deceleration controller. Designed controller is a robust controller that take state control characteristic for modelling error.

  • PDF

Regenerative Braking Characteristics of Linear induction Motor for MAGLEV (자기부상열차용 선형유도전동기의 회생 제동 특성 해석)

  • Park, Seung-Chan;Lee, Won-Min;Kim, Jung-Cheol;Park, Yeong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1866-1870
    • /
    • 2008
  • In this paper, electric braking performances of linear induction motor(LIM) designed for propelling the MAGLEV are presented. Regenerative braking is carried out from 110km/h to 20km/h, and plugging which converts the direction of travelling magnetic field is carried out in the low speed region below 20km/h. It is important to reduce attractive force which can affect the magnetic levitation load during regenerative braking or plugging operation mode. So in this paper the braking performances are analyzed by finite element method. As a result, braking force, attractive force, phase current, voltage to frequency patterns and its magnetic fields of braking LIM are presented.

  • PDF

The Braking Performance of Touch Free Linear Eddy Current Brake According to The number of Poles (극수변화에 따른 비접촉 와전류 제동기의 제동 특성)

  • Ha, Kyung-Ho;Kim, Young-Kyoun;Hong, Jung-Pyo;Kim, Gyu-Tak;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.91-93
    • /
    • 1998
  • This paper describes the braking performance of the eddy current brake for high speed trains according to the number of poles. The eddy current brake systems have to be equipped with the maximum braking force and deceleration in the given volume or mass, high braking force rate, as small normal forces as possible and stable construction. The parameters, such as the number of poles, electric ampere turns, slot width have influence on the braking force characteristics. In this paper, the effect of braking performance from the variation of the number poles is calculated by using FEM, the number of the pole which makes the maximum braking force is proposed.

  • PDF