• Title/Summary/Keyword: elastohydrodynamic lubrication(ehl)

Search Result 61, Processing Time 0.022 seconds

Micro-EHL Analysis of a Ball Joint Contact with Surface Roughness (표면 거칠기를 고려한 볼 조인트 접촉의 미세 탄성유체윤활 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.19 no.3
    • /
    • pp.123-132
    • /
    • 2003
  • The effect of surface texture on elastohydrodynamic lubrication (EHL) point contact of a ball Joint mechanism in small reciprocating compressors is studied numerically by using multigrid method. Pressure and film thickness profiles have been calculated for surface roughness with waviness of different orientations and transverse ridge and dent at minimum and maximum Hoes M parameter conditions. The influence of the amplitude and the wavelength of the surface roughness was also studied. Results show that the oblique waviness with orientation angle of 30$^{\circ}$generates the smallest minimum film thickness as compared with those of longitudinal, transverse, and other oblique roughness. The influence of transverse waviness on the minimum film thickness is smaller than for the longitudinal waviness case.

EHL Analysis of the Ball Joint Contact in a Reciprocating Compressor (왕복동형 압축기 볼 조인트 접촉의 탄성유체윤활 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.85-93
    • /
    • 2003
  • In this study, a multigrid multi-integration method has been used to solve the steady-state, elastohydrodynamic lubrication (EHL) point contact problem of a ball joint mechanism used in small reciprocating compressors. Pressure and film thickness profiles have been calculated at minimum and maximum Moes M parameter conditions during one revolution of crankshaft. The effects of various lubricant viscosities, loads, ball velocities, elastic modulli, and radii of curvature on the calculated pressure distribution and film thicknesses have been investigated. The results indicate that the viscosity of lubricant, the sliding velocity of ball, and the reduced radius of curvature have considerable effects on the minimum and central film thicknesses. Solutions obtained with the multigrid analysis are compared with results calculated according to the Hamrock & Dowson relations for the minimum and central film thicknesses.

Elastohydrodynamic Lubrication Analysis of a Lundberg Profile-type Cylindrical Roller (Lundberg형 프로파일의 원통형 로울러의 탄성유체윤활 해석)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.353-359
    • /
    • 2013
  • The rollers and/or races in cylindrical and tapered roller bearings should be profiled to relieve high edge stress concentrations caused by their finite lengths and misalignment. In this study, a numerical analysis was performed to investigate the elastohydrodynamic lubrication (EHL) of a Lundberg profile-type cylindrical roller. A finite difference method with fully nonuniform grids and the Newton-Raphson method were used to present detailed EHL pressure distributions and film shapes, as well as the variations in the minimum and central film thicknesses with the profile modification coefficient. In the Lundberg profile, the maximum pressure and minimum film thickness always occurred near the edges. Proper modification of the Lundberg profile considerably increased the minimum film thickness.

Qualitative Analysis of Film Thickness in Elastohydrodynamic Lubrication (탄성 유체 윤활에서의 유막 두께 측정에 관한 정성적 분석)

  • 최언진;박경근;장시열
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.317-323
    • /
    • 2000
  • The film thickness and shape of elastohydrodynamic lubrication is measured by optical interferometer, which is the most precise method for EHL film measurement. However, the interpretation of the image pattern from optical viscometer is not simple for two-dimensional shape. A newly developed method of image processing makes it possible to evaluate the film thickness and shape in every point of contact region with two dimensional aspects. In this study, we captured the film shape of EHL film by the monochromatic incident light and analyzed the film thickness with the image processing method, which uses phase shift method. From the values of intensity in fringes, the qualitative feature of film thickness in the contact area are obtained by using Zernike polynomial

An Analysis of Elastohydrodynamic Lubrication of Elliptical Contacts:Part I (타원접촉의 탄성유체윤활해석:제1보)

  • 박태조;현준수
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.212-218
    • /
    • 1998
  • This paper presents a study of the elastohydrodynamic lubrication of elliptical contacts where lubricant entrainment coincides with the major axis of the Hertzian contact ellipse. A finite difference method and the Newton-Raphson method are applied to analyze the problem. Film contours and pressure distributions are compared with the results for lubricant entrainment coincides with the minor axis. Variations of the minimum and central film thicknesses with the radius ratio are also examined. Therefore, the present numerical scheme can be used generally in the analysis of the EHL of elliptical contacts where the lubricant entraining vector did not coincide with either of the principal axis of the conjunction.

  • PDF

Experimental Study on the Friction Effect of Viscosity Index Improver under EHL Contact Condition

  • Kong, Hyun-Sang;Jang, Si-Youl
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.91-92
    • /
    • 2002
  • Most studies of elsatohydrodynamic lubrication are oriented only to the measurement of film thickness itself with optical interferometer. In order to exactly investigate the characteristics of a certain lubricant under the condition of additives. especially for traction performance. it is also important to get the information of traction force as well. In this work. we developed the device for measuring friction force of EHL contact condition, which can trace the film thickness over the contact area with optical interferometer. To verify the validity of the measuring system, the friction force and film thickness under EHL condition are measured with the variation of additive ratios of viscosity Index improvers.

  • PDF

EHL Analysis of Ball Bearing for Rough Surface With the FlowFactor (FlowFactor를 이용한 볼베어링의 탄성유체윤활해석)

  • Lee, Byung-Wook;Moon, Seok-Man;Kim, Tae-Wan;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.326-331
    • /
    • 2011
  • The purpose of this paper is to analyze and discuss the effects of surface roughness by comparing the elastohydrodynamic lubrication(EHL) analysis of smooth surface and rough surface as the ball bearing. In order to do this, The average flow model is adapted for the interaction of the flow rheology of lubricant and surface roughness. The average Reynolds equation and the related flow factor which describes the coupled effects of surface roughness and flow rheology, the viscosity-pressure and density-pressure relations equations, the elastic deformation equation, and the force balance equation are solved simultaneously. The results show that effects of surface roughness on the film thickness and pressre distribution should be considered especially in EHL contact problems.

Shear Thinning Effects by VII Added Lubricant with In-Situ Optical Viscometer

  • Jang Siyoul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.215-223
    • /
    • 2003
  • Viscosity index improver (VII) is one of the major additives to the modern multigrade lubricants for the viscosity stability against temperature rise. However, it causes shear thinning effects which make the film thickness lessened very delicately at high shear rate $(over\;10^5\;s^{-1})$ of general EHL contact regime. In order to exactly verify the VII's performance of viscosity stability at such high shear rate, it is necessary to make the measurement of EHL film thickness down to $\~100nm$ with fine resolution for the preliminary study of viscosity control. In this work, EHL film thickness of VII added lubricant is measured with the resolution of $\~5nm$, which will give very informative design tool for the synthesis of lubricants regarding the matter of load carrying capacity at high shear rate condition.

  • PDF

An Elastohydrodynamic Lubrication of Elliptical Contacts Part I: Direction of Lubricant Entrainment Coincident with the Major Axis of the Hertzian Contact Ellipse (타원접촉의 탄성유체윤활 제1보-윤활유의 유입방향이 Hertz 접촉타원의 장축방향인 경우)

  • 박태조;현준수
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.58-63
    • /
    • 1998
  • This paper presents a study of the elastohydrodynamic lubrication of elliptical contacts where lubricant entrainment coincides with the major axis of the Hertzian contact ellipse. A finite difference method and the Newton-Raphson method are applied to analyze the problem. Film contours and pressure distributions are compared with the results for lubricant entrainment coincides with the minor axis. Variations of the minimum and central film thicknesses with the radius ratio are also examined. The results showed that the present numerical scheme can be used generally in the analysis of the EHL of elliptical contacts where the lubricant entraining vector did not coincide with either of the principal axis of the conjunction.

An Elastohydrodynamic Lubrication of Elliptical Contacts : Part II - The Effect of Spin Motion (타원접촉의 탄성유체윤활 : 제2보 - 스핀운동의 영향)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.23 no.2
    • /
    • pp.49-55
    • /
    • 2007
  • A numerical analysis of elastohydrodynamic lubrication of elliptical contacts with both rolling and spinning has been carried out. A finite difference method with non-uniform grid systems and the Newton-Raphson method are applied to solve the problems. The velocity vectors resulting from combined spinning and rolling/sliding motion lead to asymmetric pressure distributions and film shapes. Pressure distributions, film contours and variations of the minimum and central film thicknesses are compared with various spin-roll ratios. Reduction of the minimum film thickness under spinning is remarkable whereas the central film thickness is relatively less. The spin motion have large effect on variations of the minimum film thickness with load parameter which are small in pure rolling/sliding cases. Therefore present numerical scheme can be used in the analysis of general elliptical contact EHL problems and further studies are required.