• Title/Summary/Keyword: elastic-plasticity

Search Result 387, Processing Time 0.028 seconds

Finite element analysis of welding processes (용접공정의 유한요소해석)

  • Choi, Kang-Hyouk;Kim, Ju-Wan;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.465-467
    • /
    • 2004
  • Finite element analysis of welding processes, which entail phase evolution, heat transfer and deformation, is considered in this paper. Attention focuses on numerical implementation of the thermo-elastic-plastic constitutive equation proposed by Leblond et al in consideration of the transformation plasticity. Based upon the multiplicative decomposition of deformation gradient, hyperelastic formulation is employed for efficient numerical integration, and the algorithmic consistent moduli for elastic-plastic deformations including transformation plasticity are obtained in the closed form. The convergence behavior of the present implementation is demonstrated via a couple of numerical examples. Several locking phenomena removed by Solid-shell element.

  • PDF

Analysis of Leveling Process of Sheet Steels by Elastic-Plastic Large Deformation Shell Elements (대변형 쉘 요소를 이용한 박 강판 형상교정 공정의 탄소성 유한요소 해석)

  • 박기철;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.319-322
    • /
    • 2003
  • For the analysis of leveling process by the 3-dimensional elastic-plastic finite element method, a finite element analysis program modeling large deformation of shell has been developed. This program fur analyzing large deformation of sheet during leveling includes spring-back analysis as well as efficient contact treatment between sheet and rolls of leveler. This is verified by the simple leveling experiment with 5 rolls at laboratory. Besides the leveling examples, problems within the category of large strain and rotation, such as 3-dimensional roll-up and gutter occurrence at continuous bending-unbending process are also tested for verification of the program. The residual curvatures of strip predicted by finite element analysis are within 20% error range of the experiment. The formation and direction of anticlastic curvature or gutter during bending-unbending under tension is predicted and this agrees with the experimental results.

  • PDF

Finite Element Anlaysis of Nanoindentation Process and its Experimental Verification (나노 인덴테이션 공정의 유한요소해석 및 실험적 검증)

  • 이정우;윤성원;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.116-119
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic restoration and pile-up was proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1-10nm Comparison between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

  • PDF

A COLD FORGING OF HELICAL GEAR FOR STEERING PINION

  • Kim M.E.;Kim Y.G.;Choi S.;Na K.H.;Lee Y.S.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.59-62
    • /
    • 2003
  • The precision cold forging of helical gear for steering pinion has been studied. Because of the large helix angle, there are many difficult problems to control the material flow and part dimension. The die shape was proposed to improve the flow of workpiece. In order to improve the dimensional accuracy of forged part, a FE analysis was performed. The proposed die shape drives to flow amicably workpiece. The applied load was reduced up to 10 percent, compared to the conventional-shaped-die. The elastic deformation of die has been investigated quantitatively by the 3-dimensional FE analysis. The die-land has been expanded up to $10{\mu}m$ on loading stage, based on the FEM results. Therefore, the elastic deformation amounts should be taken into consideration to improve the dimensional accuracy of forged helical gear.

  • PDF

Numerical Analysis for Growth Behavior of Sawtoothed Interface by the compression of Dissimilar Blocks Twinned (이종재료의 압축에 의한 경계면의 성장거동에 관한 수치해석)

  • 정태훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.233-236
    • /
    • 1999
  • In this paper. Compression in the case where dissimilar blocks are twinned variously are carried out in the condition of lubricated interface. The degree of growth is experimentally investigated. Moreover, numerical simulations are carried out by the elastic-plastic FEM for the case of the dissimilar blocks with the initial sawtooth angle of $60^{\circ}$ . The dissimilar blocks are twinned, larger difference between material properties leads smaller growth, and the degreased interface leads smaller growth than that in the lubricated one. Furthermore, by the simulation of compression where dissimilar blocks are twinned, it is confirmed that the tendency of the general deformation pattern is very similar to the experiment.

  • PDF

A Comparative Study on Elastic-Plastic-Static Analysis of Sheet Metal Forming (탄소성 정적해석시 해에 미치는 여러인자들의 비교연구)

  • 박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.241-244
    • /
    • 1999
  • A series of parametric study was performed for the investigation of the influence of several analysis parameters to the solution behavior in the elasti-plastic-static analysis of sheet metal forming. The parameters taken into the consideration in the present study are finite element mesh distribution and numerical integration scheme, The elstic-plastic-static analysis was performed for two cases : deflection by a point force bending by a punch Results obtained with different selections of the parameters were compared with each other experimental measurements and analytical solutions.

  • PDF

EEFORMATION BEHAVIOR OF STAINLESS STEEL-CLAD ALUMINUM SHEET METALS UNDER UNIAXIAL TENSION (스테인리스 강 클리드 알루미늄 판재의 일축인장시 변형거동)

  • 최시훈;김근환;오규환;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.69-75
    • /
    • 1995
  • The deformation behavior of stainless steel-clad aluminum sheet metals under uniaxial tension has been investigated. The differences in mechanical properties such as elastic modulus, flow stress and plastic strain ratio, of component layers of the composite sheet gave rise to warping of the tensile specimens. The warping has been analyzed by FEM and the total force and momentum equilibria. The analyzed radii of curvature of the warped specimens were smaller than the measured data possibly due to elastic recovery during unloading. The differences in mechanical properties may also give rise to transverse stresses in the component layers. The transverse stresses have been analyzed on the assumption of isostrain and by the FEM in which the warping has been taken into account. The transverse stresses calculated by the FEM were lower than those by the isostrain hypothesis due to stress relaxation by the warping and turned out to be negligible compared with the longitudinal stresses. Consequently, the flow stresses of the composite sheets follow the rule of mixtures.

  • PDF

Consideration of Damping Effect on Sheet Metal Forming (판재 성형에 미치는 damping의 영향 고찰)

  • 이상욱;양동열;정완진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.188-191
    • /
    • 1997
  • In the recent sheet metal forming simulations, it increases to adopt the dynamic explicit method for an effective computation and the elastic-plastic formulation for stress recovery. It is inevitable in the dynamic explicit method that some noises occur and sometimes partly spoil results of simulations. It is severer when complicated contact conditions are included in simulations. An effective method to control these noises is introduction of damping effects. In this paper, the concept of contact damping is introduced in order to suppress noises due to complicated contact conditions. This is checked by analyzing a simple sheet metal forming process(U-bending). From the computational results, it is shown that the contact damping can effectively control the noises due to contacts and develop more reliable internal stress states.

  • PDF

Finite Element Analysis of 3-D Steady State Deformation of Rolls and Strip in 4 High Mill (4High Mill 열간 압연 공정의 3차원 정상상태 유한요소해석)

  • 류성룡;김태효;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.130-133
    • /
    • 1998
  • An integrated finite element computer simulator is presented for the prediction of three dimensional heat transfer and metal flow occurring in the strip, and heat transfer and thermo elastic phenomena occurring in the rolls in 4 high mill hot strip rolling. Basic finite element models are described, with emphasis on combining each model to deal rigorously with the coupled aspect of the thermo-mechanical behaviors of the rols and strip through an iterative solution procedure. A series of process simulation are carried out to investigate the effect of various parameters under the actual process conditions. The results are shown and discussed.

  • PDF

Residual Stress Analysis of Cold Rolled Sheet in Shadow Mask (Shadow Mask용 냉간 압연박판의 잔류응력 해석)

  • 정호승;조종래;문영훈;김교성
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.195-198
    • /
    • 2002
  • Residual stress of sheet occurs during cold rolling and it is hard to avoid and inevitable. The residual stress in the sheet cause etching curls when it suffers peroration process. The residual stress through the thickness direction in the sheet is a function of a friction coefficient, total reduction, mil size and initial sheet thickness. To estimate the residual stress and deformation due to etching curl, FEM analysis is performed. A numerical analysis is used a ANSYS 5.6 and an elastic-plastic constitutive equations. rho simulation results indicate a distribution of residual stress.

  • PDF