• Title/Summary/Keyword: elastic width

Search Result 258, Processing Time 0.028 seconds

A Characteristic Analysis on the Elastic Stiffness of the Tapered-width Leaf Type Holddown Spring Assembly Designed in KOFA's Design Space

  • Song, Kee-Nam;Seo, Keum-Seok
    • Nuclear Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.583-593
    • /
    • 1996
  • An elastic stiffness formula of a leaf type holddown spring(HDS) assembly with a uniformly tapered width from $w_0$ to $w_14$ over the length, has been analytically derived based on Euler beam theory and Castigliano's theorem. Elastic stiffnesses of the tapered-width leaf type HDSs(TW-HDSs) designed in the same dimensional design spaces as the KOFA HDSs have been evaluated from the derived formula, in addition, a parametric study on the elastic stiffness of the TW-HDSs has been carried out. Analysis results show that, as the effects of axial and shear force on the elastic stiffness of He TW-HDSs have been 0.15~0.21% of the elastic stiffness, most of the elastic stiffness is attributed to the bending moment, and that elastic stiffnesses of the TW-HDSs have been about 32~33% higher than those of the KOFA HDSs. It is found that the number of leaves composing a HDS assembly could be lessened by one under the conditions that the TW-HDSs have been adopted in KOFA.

  • PDF

Effects of Specimen Size in Evaluation of Elastic-Plastic Fracture Toughness by Ultrasonic Method (초음파법을 이용한 탄소성 파괴인성치 평가에 있어서 시험편 크기의 영향)

  • 강동명;함경춘;우창기
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.19-24
    • /
    • 1998
  • Elastic-plastic fracture toughness($J_{IC}$) by ultrasonic method is evaluated in terms of width and thickness. Widths of specimen in 6061-T6 aluminum alloy are 50mm and 100mm, thicknesses of those are 20mm and 25mm, respectively. Elastic-plastic fracture toughness by ultrasonic method is independent of specimen thickness and side groove. Angle beam probe which are placed on the end of the compact specimen detect the maximum crack extension effectively. Comparing with elastic-plastic fracture toughness by ultrasonic method and that of unloading compliance method, $J_{IC}$ of ultrasonic method are underestimated to that of unloading compliance method. Elastic-plastic fracture toughness of width 100mm specimen are underestimated to that of width 50mm specimen about 20%.

  • PDF

Estimation of the Elastic Stiffness of TW-HDS Assembly (너비감소 판형 홀다운스프링 집합체의 탄성강성도 평가)

  • Song, Kee-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.180-187
    • /
    • 1997
  • A formula for estimating the elastic stiffness of TW-HDS with a uniformly tapered width from w$_{0}$ to w$_{1}$ over the length, has been analytically derived based on Euler beam theory and Castigliano's theorem. Elastic stiffnesses of the TW-HDSs designed in the same dimensional design spaces as the KOFA HDSs have been estimated from the derived formula, in addition, a sensitivity study on the elastic stiffness of the TW-HDSs has been carried out. Analysis results show that elastic stiffnesses of the TW-HDSs have been by far higher than those of the KOFA HDSs, and that, as the effects of axial and shear force on the elastic stiffness have been 0.15-0.21%, most of the elastic stiffness is attributed to the bending moment. As a result of sensitivity analysis, the elastic stiffness sensitivity at each design variable is quantified and design variables having remarkable sensitivity are identified. Among the design variables, leaf thickness is identified as that of having the most remarkable sensitivity of the elastic stiffness.

Free Vibration Analysis of Horizontally Curved Beams with Variable Cross Sectional Width on Elastic Foundation (탄성지반 위에 놓인 단면폭이 변화하는 수평 곡선보의 자유진동 해석)

  • 이병구;박광규;오상진;이태은
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.29-36
    • /
    • 2003
  • This paper deals with the free vibration analysis of horizontally circular mea beams with variable cross sectional width on elastic foundations. Taking into account the effects of rotatory inertia and shear deformation differential equations governing the free vibrations of such beams are derived, in which the Whlkler foundation model is considered as the elastic foundation. The variable width of beam is chosen as the linear equation. The differential equations are solved numerically to calculate natural frequencies. In numerical examples, the curved beam with the hinged-hinged, hinged-clamped, clamped-hinged and damped-clamped end constraints are considered The parametric studies are conducted and the lowest four frequency parameters are reported in figures as the non-dimensional forms.

  • PDF

Contact problem for a stringer plate weakened by a periodic system of variable width slots

  • Mir-Salim-zada, Minavar V.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.719-724
    • /
    • 2017
  • We consider an elastic isotropic plate reinforced by stringers and weakened by a periodic system of rectilinear slots of variable width. The variable width of the slots is comparable with elastic deformations. We study the case when the slots faces get in contact at some area. Determination of parameters characterizing the partial closure of variable width slots is reduced to the solution of a singular integral equation. The action of the stringers is replaced with unknown equivalent concentrated forces at the points of their connection with the plate. The contact stresses and contact zone sizes are found from the solution of the singular integral equation.

Elastic Modulus of Locally Stiffness-variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications (신축성 전자패키징용 강성도 국부변환 polydimethylsiloxane 기판의 탄성계수)

  • Oh, Hyun-Ah;Park, Donghyeun;Han, Kee-Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.91-98
    • /
    • 2015
  • In order to apply to stretchable electronics packaging, locally stiffness-variant stretchable substrates consisting of island structure were fabricated by combining two polydimethylsiloxane elastomers of different stiffnesses and their elastic moduli were characterized as a function of the width of the high-stiffness island. The low-stiffness substrate matrix and the embedded high-stiffness island of the stretchable substrate were formed by using Dragon Skin 10 of the elastic modulus of 0.09 MPa and Sylgard 184 of the elastic modulus of 2.15 MPa, respectively. A stretchable substrate was fabricated to be a configuration of 6.5-cm length, 0.4-cm thickness, and 2.5-cm width, in which a high-stiffness Sylgard 184 island, of 4-cm length, 0.2-cm thickness, and 0.5~1.5-cm width, was embedded. The elastic modulus of a stretchable substrate was increased from 0.09 MPa to 0.16 MPa by incorporating the Sylgard 184 island of 0.5-cm width to Dragon Skin 10 substrate matrix. The elastic modulus was further improved to 0.18 MPa and 0.2 MPa with increasing the Sylgard 184 island width to 1.0 cm and 1.5 cm, which were in good agreement with values estimated by combining the Voigt structure of isostrain and the Reuss structure of isostress.

Finite Element Simulation of Elastic Waves for Detecting Defects and Deteriorations in Underwater Steel Plates (수중강판의 결함 및 열화 검출을 위한 탄성파 유한요소 시뮬레이션)

  • Woo, Jinho;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.61-66
    • /
    • 2013
  • This paper presents the results of finite element simulations of elastic wave propagation in an underwater steel plate and the verification of a proposed method utilizing elastic wave-based damage detection. For the simulation and verification, we carried out the following procedures. First, three-dimensional finite element models were constructed using a general purpose finite element program. Second, two types of damages (mechanical defects and deteriorations) were applied to the underwater steel plate and three parameters (defect location, defect width, and depth) were considered to adjust the severity of the applied damages. Third, elastic waves were generated using the oblique incident method with a Gaussian tone burst, and the response signals were obtained at the receiving point for each defect or deterioration case. In addition, the received time domain signals were analyzed, particularly by measuring the magnitudes of the maximum amplitudes. Finally, the presence and severity of each type of damage were identified by the decreasing ratios of the maximum amplitudes. The results showed that the received signals for the models had the same global pattern with minor changes in the amplitudes and phases, and the decreasing ratio generally increased as the damage area increased. In addition, we found that the defect depth was more critical than the width in the decrease of the amplitude. This mainly occurred because the layout of the depth interfered with the elastic wave propagation in a more severe manner than the layout of the width. An inverse analysis showed that the proposed method is applicable for detecting mechanical defects and quantifying their severity.

The Evaluation for Elastic-Plastic Fracture Toughness in a Reactor Pressure Vessel Steel(SA508-3) (원자력 압력용기강(SA508-3)의 탄소성 파괴인성 평가)

  • 오세욱;윤한기;임만배
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.91-102
    • /
    • 1993
  • The elastic-plastic fracture thoughness J sub(IC) of Nuclear Reactor Vessel Steel(SA 508-3) which has high toughness was discussed at temperatures RT, $-20^{\circ}C$, $200^{\circ}C$ and 1/2/CT specimen was used for this study. Especially the two methods recommended in ASTM and JSME were compared. It was difficult to find J sub(IC) by ASTM R-curve method with the specimen used for this research, while JSME R-curve method yielded good result. The stretched zone width menthod gave slightly larger J sub(IC) values than those by the R-curve method for SA 508-3 steel.

  • PDF

A Study on Design of the Cross Type Ultrasonic Rotary Motor (Cross형 초음파 회전모터의 설계에 관한 연구)

  • Chong, Hyon-Ho;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.191-192
    • /
    • 2005
  • In this study, the ultrasonic motor which has hollowed cross type stator was designed, and the elastic body of ultrasonic motor was optimized by using a finite element analysis program(ANSYS 9.0). When the length of leg(L) of the elastic body was increased and the width of piezoceramics was decreased, the resonant frequency was increased and the displacement of contact point between the rotor and the stator was increased. However, when the length of the leg was over the 1/3 point of the width of ceramics, the displacement of the contact point was decreased, because the elastic buckle was generated in the leg.

  • PDF

A Study on the Deflection of the Circular Plate with a Linear Change of Thickness using the Elastic Beam Theory (보이론을 적용한 선형적 두께변화를 갖는 원형평판의 처짐에 관한 연구)

  • Han D.S.;Han G.J.;Kim T.H.;Shim J.J.;Lee S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1695-1698
    • /
    • 2005
  • In this paper we investigate characteristics of deflection for circular plate with the non-symmetric boundary condition that is the boundary condition partly supported along the width direction of plate according to the length change of supporting end. For two boundary conditions such as simple supported and completely clamped boundary conditions, this study derives the maximum deflection formula of the circular plate using differential equation of elastic curve, assuming that a circular plate is a beam with the change of width and thickness along the longitudinal direction. The deflection formula of circular plate is verified by carrying out finite element analysis with regard to the ratio of length of supporting end to radius of circular plate.

  • PDF