• Title/Summary/Keyword: elastic strain energy

Search Result 281, Processing Time 0.03 seconds

A study on fatigue characteristics of spring under high-temperature (고온하에서의 스프링의 피로특성에 관한 연구)

  • 이영배;염영하;우창수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.77-87
    • /
    • 1986
  • The fatigue characteristic study of a Pony Coil spring is performed by considering the tropical service conditions in the range of 50.deg. C through 150.deg. C. The experiment results of the static and dynamic characteristics of the test pieces agreed with the result of the strain analysis by wittricke's method. The strain energy value is increased as temperature rises. An increase is 1.58% at 100.deg. C and 2.26% at 150.deg. C after fatigue tests. The elastic strain is also decreased as temperature rises.

  • PDF

Prediction of Strain Energy Function for Butyl Rubbers (부틸고무의 변형률 에너지 함수 예측)

  • Kim Nam-Woong;Kim Kug-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1227-1234
    • /
    • 2006
  • Up to now, several mathematical theories based on strain energy functions have been developed for rubber materials. These theories, coupled with the finite element method, can be used very effectively by engineers to analyze and design rubber components. However, due to the complexities of the mathematical formulations and the lack of general guidelines available fur the analysis of rubber components, it is a formidable task for an engineer to analyze rubber components. In this paper a method for predicting strain energy functions - Neo-Hookean model and Mooney-Rivlin model - from the hardness using the empirical equation without any experiment is discussed. First based on the elasticity theories of rubber, the relation between stress and strain is defined. Then for the butyl rubbers, the model constants of Neo-Hookean model and Mooney-Rivlin model are calculated from uniaxial tension tests. From the results, the usefulness of the empirical equation to estimate elastic modulus from hardness is confirmed and, fur Mooney-Rivlin model, the predicted and the experimental model constants are compared and discussed.

Finite Element Analysis of the Mandibular Canine for Nonlinear Deformation of the Periodontal Ligament (치주인대의 비선형 거동을 고려한 하악 견치의 유한요소해석)

  • Yang, Hoon-Chul;Kim, Ki-Tae;Ha, Man-Hee;Son, Woo-Sung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.550-557
    • /
    • 2003
  • Hyperelastic constitutive equations for nonlinear deformation of the periodontal ligament were investigated. The parameters in the strain energy potentials were obtained from experimental data for uniaxial and shear responses of the human periodontal ligament. The hyperelastic constitutive equations based on two strain energy potentials was also compared with the linear elastic equation, which is recently reported. The best fitted parameters in the strain energy potentials was applied to finite element program (ABAQUS) to simulate special orthodontic treatment of a mandibular canine.

  • PDF

Three-dimensional Topology Optimization using the CATO Algorithm

  • LEE, Sang Jin;BAE, Jung Eun
    • Architectural research
    • /
    • v.11 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • An application of the constrained adaptive topology optimization (CATO) algorithm is described for three-dimensional topology optimization of engineering structures. The enhanced assumed strain lower order solid finite element (FE) is used to evaluate the values of objective and constraint functions required in optimization process. The strain energy (SE) terms such as elastic and modal SEs are employed as the objective function to be minimized and the initial volume of structures is introduced as the constraint function. The SIMP model is adopted to facilitate the material redistribution and also to produce clearer and more distinct structural topologies. The linearly weighted objective function is introduced to consider both static and dynamic characteristics of structures. Several numerical tests are tackled and it is used to investigate the performance of the proposed three-dimensional topology optimization process. From numerical results, it is found to be that the CATO algorithm is easy to implement and extremely applicable to produce the reasonable optimum topologies for three dimensional optimization problems.

Machine learning techniques for prediction of ultimate strain of FRP-confined concrete

  • Tijani, Ibrahim A.;Lawal, Abiodun I.;Kwon, S.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.101-111
    • /
    • 2022
  • It is widely known that axially loaded fiber-reinforced polymer (FRP) confined concrete presents significant and enhanced mechanical properties with reference to the unconfined concrete. Therefore, to predict the mechanical behavior of FRP-confined concrete two quantities-peak strength and ultimate strain are required. Despite the significant advances, the determination of the ultimate strain of FRP-confined concrete is one of the most challenging problems to be resolved. This is often attributed to our persistence in desiring the conventional methods as the sole technique to examine this phenomenon and the complex nature of the ultimate strain of FRP-confined concrete. To bridge the research gap, this study adopted two machine learning (ML) techniques-artificial neural network (ANN) and Gaussian process regression (GPR)-to analyze observations obtained from 627 datasets of FRP-confined concrete circular and non-circular sections under axial loading test. Besides, the techniques are also used to predict the ultimate strain of FRP-confined concrete. Seven parameters namely width/diameter of the specimens, corner radius ratio, the strength of concrete, FRP elastic modulus, FRP thickness, FRP tensile rupture strain, and the axial strain of unconfined concrete-are the input parameters used to predict the ultimate strain of FRP-confined concrete. The results of the current study highlight the merit of using AI techniques in structural engineering applications given their extraordinary ability to comprehend multidimensional phenomena of FRP-confined concrete structures with ease, low computational cost, and high performance over the existing empirical models.

The General Characteristic of Elastic-Plastic Spectra (탄소성 응답스펙트럼의 일반적인 성질에 대하여)

  • 전규식
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.233-240
    • /
    • 1997
  • Seven kinds of hysteric model were used and classified three groups considering the absorbing capacities of strain energy for each model. Four kids of each model. Four kinds of strong motion earthquake record (two of them were recorded in Japan and the others in U.S.A) are used. The yield strength of building was set in the ratio to the maximum input acceleration (Yield Strength / Maximum Acceleration = 0.5~3.0). Natural periods of structures were varied 0.1~3.0 second with an interval of 0.1 second. First group : Elastic-Plastic model, Ramberg-Osgood model Second group : Degrading Tri-liner model, Takeda model Third group : Slip model, Origin model, Max-D model Elastic-plastic response spectra were calculated for response velocities, displacement, energy input, ductility factors, accumulated ductility factors. The equivalent response values of M.D.O.F systems against S.D.O.F system were calculated to compare the relationship of two systems.

  • PDF

Mechanical Properties of Steel-Fiber Reinforced Concrete (강섬유보강콘크리트의 역학적 거동 특성)

  • 홍성구;권숙국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.3
    • /
    • pp.81-91
    • /
    • 1989
  • The aims of this study were to determine mechanical properties of steel-fiber reinforced concrete under splitting tensile, flexural and compressive loading, and thus to improve the possible applications of concrete. The major factors experimentally investigated in this study were the fiber content and the length and the diameter of fibers. The major results obtained are summarized as follows : 1.The strength, strain, elastic modulus and energy obsorption capability of steel-fiber reinforced concrete under splitting tensile loading were significantly improved by increasing the fiber content or the aspect ratio. 2.The flexural strength, central deflection, and flexural toughness of steel4iber reinforced beams were significantly improved by increasing the fiber content or the aspect ratio. And flexural behavior characteristic was good at the aspect ratio of about 60 to 75. 3.The strength, strain, and energy absorption capability in compression were increased with the increase of the fiber content. These effects were not so sensitive to the aspect ratio. The energy absorption capability was improved only slightly with the increase of the fiber length. 4.The elastic modulus, transverse strains, and poisson's ratios in compression were not influenced by the fiber content. 5.The steel-fibers were considered to be appropriated as the materials covering the weakness of concrete because the mechanical properties of concrete in tension and flexure were significantly improved by steel-fiber reinforcement.

  • PDF

Influence of the roof lithological characteristics on rock burst: a case study in Tangshan colliery, China

  • Jienan, Pan;Zhaoping, Meng;Quanlin, Hou;Yiwen, Ju;Guofu, Li
    • Geomechanics and Engineering
    • /
    • v.1 no.2
    • /
    • pp.143-154
    • /
    • 2009
  • Many factors influence occurrences of rock burst in coal mines, such as mining methods, control methods of the coal roof, lithological characteristics of the roof and floor, tectonic stress, groundwater and so on. Among those factors, lithological characteristics in the roof are the intrinsic controlling factors that affect rock burst during coal mining. Tangshan colliery is one of the coal mines that have suffered seriously from rock bursts in China. In this paper, based on the investigating the lithological characteristics of coal roofs and occurrence of rock bursts in Tangshan colliery, a numerical method is used to study the influence of roof lithological characteristics on rock burst potential. The results show that the lithological characteristics in the roof have an important impact on the distributions of stresses and elastic strain energy in coal seams and their surrounding rocks. Occurrences of rock bursts in this colliery have a close correlation with the thick-bedded, medium- to fine-grained sandstones in the roof. Such strata can easily cause severe stress concentration and accumulate enough energy to trigger rock bursts in the working face during mining operations.

Influence of sine material gradients on delamination in multilayered beams

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.8 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • The present paper deals with delamination fracture analyses of the multilayered functionally graded non-linear elastic Symmetric Split Beam (SSB) configurations. The material is functionally graded in both width and height directions in each layer. It is assumed that the material properties are distributed non-symmetrically with respect to the centroidal axes of the beam cross-section. Sine laws are used to describe the continuous variation of the material properties in the cross-sections of the layers. The delamination fracture is analyzed in terms of the strain energy release rate by considering the balance of the energy. A comparison with the J-integral is performed for verification. The solution derived is used for parametric analyses of the delamination fracture behavior of the multilayered functionally graded SSB in order to evaluate the effects of the sine gradients of the three material properties in the width and height directions of the layers and the location of the crack along the beam width on the strain energy release rate. The solution obtained is valid for two-dimensional functionally graded non-linear elastic SSB configurations which are made of an arbitrary number of lengthwise vertical layers. A delamination crack is located arbitrary between layers. Thus, the two crack arms have different widths. Besides, the layers have individual widths and material properties.

Round robin analysis to investigate sensitivity of analysis results to finite element elastic-plastic analysis variables for nuclear safety class 1 components under severe seismic load

  • Kim, Jun-Young;Lee, Jong Min;Park, Jun Geun;Kim, Jong-Sung;Cho, Min Ki;Ahn, Sang Won;Koo, Gyeong-Hoi;Lee, Bong Hee;Huh, Nam-Su;Kim, Yun-Jae;Kim, Jong-In;Nam, Il-Kwun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.343-356
    • /
    • 2022
  • As a part of round robin analysis to develop a finite element elastic-plastic seismic analysis procedure for nuclear safety class 1 components, a series of parametric analyses was carried out on the simulated pressurizer surge line system model to investigate sensitivity of the analysis results to finite element analysis variables. The analysis on the surge line system model considered dynamic effect due to the seismic load corresponding to PGA 0.6 g and elastic-plastic material behavior based on the Chaboche combined hardening model. From the parametric analysis results, it was found that strains such as accumulated equivalent plastic strain and equivalent plastic strain are more sensitive to the analysis variables than von Mises effect stress. The parametric analysis results also identified that finite element density and ovalization option in the elbow elements have more significant effect on the analysis results than the other variables.