• Title/Summary/Keyword: elastic stiffness

Search Result 1,218, Processing Time 0.031 seconds

Effect of Elastic Compression Stocking and Kinesio Taping during Heel-raise Exercise on Muscle Activity, Mechanical Properties, and Muscle Fatigue in Healthy Women

  • SeongHo Yun;Yun Jung Kang;Ji Hyun Kim;Hyeon Hui Do;Seo Young Shin;Su Bin Lee;Jung Won Kwon
    • The Journal of Korean Physical Therapy
    • /
    • v.35 no.1
    • /
    • pp.24-30
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate the effectiveness of the elastic compression stockings and Kinesio taping on muscle activity and mechanical properties in healthy women during the heel raise exercise that causes muscle fatigue. Methods: Participants were divided into the elastic compression stockings group (ESG, n=8), Kinesio taping group (KTG, n=8), and control group (CG, n=8). All participants performed the heel raise exercise to cause muscle fatigue. Muscle activity, stiffness, and the muscle tone of the gastrocnemius and tibialis anterior were measured before and after the heel raise exercise. Results: In the gastrocnemius, muscle activity was significantly increased after the heel raise exercise in both the ESG and KTG (p<0.05). There was a significant difference in the change in the gastrocnemius muscle activity between the groups (p<0.05). Post hoc analysis showed that the ESG exhibited a significantly greater change in gastrocnemius muscle activity than the CG (p<0.05). The muscle stiffness of the gastrocnemius was significantly decreased after the heel raise exercise in the ESG (p<0.05). The muscle tone of the gastrocnemius was significantly increased after the heel raise exercise in the control group (p<0.05). There were no significant differences in the change in the gastrocnemius stiffness and muscle tone between the groups (p>0.05). In the tibialis anterior, there were no significant differences in muscle activity, stiffness, and muscle tone between and within the groups (p>0.05). Conclusion: Our findings suggest that the use of elastic compression stockings and Kinesio taping during the heel raise exercise are beneficial and delay muscle fatigue in the gastrocnemius.

Experimental and theoretical behaviour analysis of steel suspension members subjected to tension and bending

  • Kmet, Stanislav;Tomko, Michal;Bin, Molinne
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.343-365
    • /
    • 2012
  • Steel suspension members subjected to tension and bending offer an economical and efficient alternative for many structural problems. This paper is concerned with the elastic and elastic-plastic behaviour of suspension members with bending stiffness subjected to vertical point and uniformly distributed loads. An experimental study is described which focuses on the response of three suspension members with various T-shaped steel hot rolled sections and geometric configurations. The tests enable direct assessment of the influence of a key parameter such as the sag-to-span ratio on the response of suspension members. Detailed nonlinear finite-element models are generated to provide a tool for theoretical analyses and to facilitate further understanding of the behaviour. Results demonstrate that experimentally obtained responses can generally be closely predicted numerically because there are relatively good agreements between finite element and tests results. The results and observations of subsequent numerical parametric studies offer an insight into the key factors that govern the behaviour of suspension members with bending stiffness in the elastic-plastic range.

Evaluation of Elastic Properties for Nanoscale Coating Layers Using Ultrasonic Atomic Force Microscopy (초음파원자현미경을 이용한 나노스케일 박막 코팅층에 대한 탄성특성 평가)

  • Kwak, Dong Ryul;Cho, Seung Bum;Park, Ik Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.475-480
    • /
    • 2015
  • Ultrasonic atomic force microscopy (Ultrasonic-AFM) has been used to investigate the elastic property of the ultra-thin coating layer in a thin-film system. The modified Hertzian theory was applied to predict the contact resonance frequency through accurate theoretical analysis of the dynamic characteristics of the cantilever. We coat 200 nm thick Aluminum and Titanium thin films on the substrate using the DC Magnetron sputtering method. The amplitude and phase of the contact resonance frequency of a vibrating cantilever varies in response to the local stiffness constant. Ultrasonic-AFM images were obtained using the variations in the elastic property of the materials. The morphology of the surface was clearly observed in the Ultrasonic-AFM images, but was barely visible in the topography. This research demonstrates that Ultrasonic-AFM is a promising technique for visualizing the distribution of local stiffness in the nano-scale thin coatings.

Soil Properties in Relation to Elastic Wave (탄성파를 이용한 흙의 특성연구)

  • 조계춘;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.83-101
    • /
    • 2002
  • Elastic waves provide an important information about the soil mass in the near-surface. Soil properties in relation to elastic wave parameters are clarified to facilitate the application of geophysical technique to soil characterization. As an example, experiments are performed to gain further insight into the behavior of unsaturated particulate materials using bender elements. The small strain stiffness is continuously measured on specimens subjected to drying, and changes in stiffness are related to changes in interparticle forces such as capillarity, bonding due to ion sharing, buttress effect due to fine migration, and cementation due to salt precipitation. The rate of menisci regeneration is studied after a perturbation as well. Finally, several phenomena associated with the evolution of capillary forces during drying are identified.

A new method for determining the effective length factor of columns in partially braced frames on elastic supports

  • Adel Slimani;Toufik Belaid;Messaoud Saidani;Fatiha Ammari;Redouane Adman
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.825-835
    • /
    • 2023
  • The effective buckling length factor is an important parameter in the elastic buckling analysis of steel structures. The present article aims at developing a new method that allows the determination of the buckling factor values for frames. The novelty of the method is that it considers the interaction between the bracing and the elastic supports for asymmetrical frames in particular. The approach consists in isolating a critical column within the frame and evaluating the rotational and translational stiffness of its restraints to obtain the critical buckling load. This can be achieved by introducing, through a dimensionless parameter 𝜙i, the effects of coupling between the axial loading and bending stiffness of the columns, on the classical stability functions. Subsequently, comparative, and parametric studies conducted on several frames are presented for assessing the influence of geometry, loading, bracing, and support conditions of the frame columns on the value of the effective buckling length factor K. The results show that the formulas recommended by different approaches can give rather inaccurate values of K, especially in the case of asymmetric frames. The expressions used refer solely to local stiffness distributions, and not to the overall behavior of the structure.

Minimum stiffness of bracing for multi-column framed structures

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.305-325
    • /
    • 1998
  • A method that determines the minimum stiffness of baracing to achieve non-sway buckling conditions at a given story level of a multi-column elastic frame is proposed. Condensed equations that evaluate the required minimum stiffness of the lateral and torsional bracing are derived using the classical stability functions. The proposed method is applicable to elastic framed structures with rigid, semirigid, and simple connections. It is shown that the minimum stiffness of the bracing required by a multi-column system depends on: 1) the plan layout of the columns; 2) the variation in height and cross sectional properties among the columns; 3) the applied axial load pattern on the columns; 4) the lack of symmetry in the loading pattern, column layout, column sizes and heights that cause torsion-sway and its effects on the flexural bucking capacity; and 5) the flexural and torsional end restrains of the columns. The proposed method is limited to elastic framed structures with columns of doubly symmetrical cross section with their principal axes parallel to the global axes. However, it can be applied to inelastic structures when the nonlinear behavior is concentrated at the end connections. The effects of axial deformations in beams and columns are neglected. Three examples are presented in detail to show the effectiveness of the proposed method.

Seismic Response Evaluation of PSCI Girder Bridges Considering Stiffness Variation in Elastic Bearings (탄성받침의 강성 변동을 고려한 PSCI 거더 교량의 지진 응답 평가)

  • Yoon, Hyejin;Cho, Chang-Beck;Kim, Young-Jin;Kang, Jun Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.187-192
    • /
    • 2023
  • An elastic bearing must be strong against vertical loads and flexible against horizontal loads. However, due to the material characteristics of rubber, it may show variability due to the manufacturing process and environmental factors. If the value applied in the bridge design stage and the actual measured value have different values or if the performance during operation changes, the performance required in the design stage may not be achieved. In this paper, the seismic response of bridges was compared and analyzed by assuming a case where quality deviation occurs during construction compared to the design value for elastic bearings, which have not only always served as traditional bearings but also have had many applications in recent seismic reinforcement. The bearing's vertical stiffness and shear stiffness deviation were considered separately for the quality deviation. In order to investigate the seismic response, a time history analysis was performed using artificial seismic waves. The results confirmed that the change in the bearing's shear stiffness affects the natural period and response of the structure.

Parametric studies of cyclic behavior of bar damper and its effect on steel frames

  • Kambiz Cheraghi;Mehrzad TahamouliRoudsari;Reza Aghayari;Kaveh Cheraghi
    • Structural Engineering and Mechanics
    • /
    • v.92 no.2
    • /
    • pp.173-187
    • /
    • 2024
  • In this study, the cyclic behavior of Bar Damper (BD) and its effect on the seismic performance of the steel frame was investigated using numerical and analytical methods. Initially, the calibrated model was used to conduct parametric studies on the cyclic behavior of the damper. The purpose of parametric studies was to provide equations for calculating effective and elastic stiffness, ultimate strength, and energy dissipation using its diameter and height. The impact of BD on the steel frame was examined in the second section of the research. In this section, studies were conducted using pushover analysis to investigate the impact of BD on the elastic stiffness, energy absorption, ductility, and strength of the frame. The results demonstrated that increasing the height of the BDs resulted in higher energy dissipation. However, reducing the height and increasing the diameter increased effective stiffness, yield strength, and elastic stiffness. The EVDR results showed that the diameter of the damper has a negligible effect on it, and its value increases with the decrease in height. In the best case, the addition of BD causes a 23% increase in energy dissipation and a 60% increase in frame ductility.

Elastic properties of CNT- and graphene-reinforced nanocomposites using RVE

  • Kumar, Dinesh;Srivastava, Ashish
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1085-1103
    • /
    • 2016
  • The present paper is aimed to evaluate and compare the effective elastic properties of CNT- and graphene-based nanocomposites using 3-D nanoscale representative volume element (RVE) based on continuum mechanics using finite element method (FEM). Different periodic displacement boundary conditions are applied to the FEM model of the RVE to evaluate various elastic constants. The effects of the matrix material, the volume fraction and the length of reinforcements on the elastic properties are also studied. Results predicted are validated with the analytical and/or semiempirical results and the available results in the literature. Although all elastic stiffness properties of CNT- and graphene-based nanocomposites are found to be improved compared to the matrix material, but out-of-plane and in-plane stiffness properties are better improved in CNT- and graphene-based nanocomposites, respectively. It is also concluded that long nanofillers (graphene as well as CNT) are more effective in increasing the normal elastic moduli of the resulting nanocomposites as compared to the short length, but the values of shear moduli, except $G_{23}$ of CNT nanocomposite, of nanocomposites are slightly improved in the case of short length nanofillers (i.e., CNT and graphene).

Optimality Investigation of Bending Stiffness According to Particle Size Distribution (입자 크기의 구성 비율에 따른 휨강성 최적화 가능성의 탐구)

  • Song, Eun-Jeong;Lee, Young-Min;Moon, Hyungpil;Choi, Hyouk Ryeol;Koo, Ja Choon
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.332-338
    • /
    • 2017
  • As an interpretation of existing jamming effects, the main variables affecting the increase in stiffness due to jamming are known as system density, jamming density, pressure, and particulate temperature. The main variable, jamming density, is closely related to the distribution of particle size and contact properties such as particle shape and friction. However, the complexity of these variables makes it difficult to fully understand the mechanism of the jamming effect. In this paper, we focus on the jamming effects of particles that have more elastic properties than particles such as sand and coffee powder, which are commonly used as constituent particles of existing jamming, in order to reduce complicated factors such as temperature and concentrate on jamming effects based on elastic characteristics of particles. It was experimentally explored the possibility of increasing stiffness by mixing particles of different sizes rather than simply increasing the bending stiffness by controlling the particle size. Through simulations and experiments, we found a case where the stiffness of each particle size distribution is larger than the stiffness of each particle size.