• 제목/요약/키워드: elastic rock

검색결과 341건 처리시간 0.023초

Influence of time-dependency on elastic rock properties under constant load and its effect on tunnel stability

  • Aksoy, C.O.;Aksoy, G.G. Uyar;Guney, A.;Ozacar, V.;Yaman, H.E.
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.1-7
    • /
    • 2020
  • In structures excavated in rock mass, load progressively increases to a level and remains constant during the construction. Rocks display different elastic properties such as Ei and ʋ under different loading conditions and this requires to use the true values of elastic properties for the design of safe structures in rock. Also, rocks will undergo horizontal and vertical deformations depending on the amount of load applied. However, under constant loads, values of Ei and ʋ will vary in time and induce variations in the behavior of the rock mass. In some empirical equations in which deformation modulus of the rock mass is taken into consideration, elastic parameters of intact rock become functions in the equation. Hence, the use of time dependent elastic properties determined under constant loading will yield more reliable results than when only constant elastic properties are used. As well known, rock material will play an important role in the deformation mechanism since the discontinuities will be closed due to the load. In this study, Ei and ʋ values of intact rocks were investigated under different constant loads for certain rocks with high deformation capabilities. The results indicated significant time dependent variations in elastic properties under constant loading conditions. Ei value obtained from deformability test was found to be higher than the Ei value obtained from the constant loading test. This implies that when static values of elastic properties are used, the material is defined as more elastic than the rock material itself. In fact, Ei and ʋ values embedded in empirical equations are not static. Hence, this workattempts to emerge a new understanding in designing of safer structures in rock mass by numerical methods. The use of time-dependent values of Ei and ʋ under different constant loads will yield more accurate results in numerical modeling analysis.

절리암반에서의 탄성파 전파 특성 (Elastic Wave Propagation in Jointed Rock Mass)

  • 차민수;조계춘;박승형
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.515-520
    • /
    • 2005
  • The behavior of jointed rock mass is much different from that of intact rock due to the presence of joints. Similarly, the characteristics of elastic wave propagation in jointed rock are considerably different from those of intact rock. The propagation of elastic waves in jointed rock is greatly dependent on the state of stress. The roughness, filling materials, and spacing of joints also affect wave propagation in jointed rock. If the wavelength of elastic waves is much larger than the spacing between joints, wave propagation in jointed rock mass can be considered as wave propagation in equivalent continuum. A rock resonant column testing apparatus is made to measure elastic waves propagating through jointed rock in the state of equivalent continuum. Three types of wave, i.e, torsional, longitudinal and flexural waves are monitored during rock resonant column tests. Various roughness and filling materials are applied to joints, and rock columns with various spacings are used to understand how these factors affect wave propagation under a small strain condition. The experimental results suggest that the characteristics of wave propagation in jointed rock mass are governed by the state of stress and influenced by roughness, filling materials and joint spacings.

  • PDF

Estimation of rock tensile and compressive moduli with Brazilian disc test

  • Wei, Jiong;Niu, Leilei;Song, Jae-Joon;Xie, Linmao
    • Geomechanics and Engineering
    • /
    • 제19권4호
    • /
    • pp.353-360
    • /
    • 2019
  • The elastic modulus is an important parameter to characterize the property of rock. It is common knowledge that the strengths of rocks are significantly different under tension and compression. However, little attention has been paid to the bi-modularity of rock. To validate whether the rock elastic moduli in tension and compression are the same, Brazilian disc, direct tension and compression tests were conducted. A horizontal laser displacement meter and a pair of vertical and transverse strain gauges were applied. Four types of materials were tested, including three types of rock materials and one type of steel material. A comprehensive comparison of the elastic moduli based on different experimental results was presented, and a tension-compression anisotropy model was proposed to explain the experimental results. The results from this study indicate that the rock elastic modulus is different under tension and compression. The ratio of the rock elastic moduli under compression and tension ranges from 2 to 4. The rock tensile moduli from the strain data and displacement data are approximate. The elastic moduli from the Brazilian disc test are consistent with those from the uniaxial tension and compression tests. The Brazilian disc test is a convenient method for estimating the tensile and compressive moduli of rock materials.

Preliminary numerical study on long-wavelength wave propagation in a jointed rock mass

  • Chong, Song-Hun;Kim, Ji-Won;Cho, Gye-Chun;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • 제21권3호
    • /
    • pp.227-236
    • /
    • 2020
  • Non-destructive exploration using elastic waves has been widely used to characterize rock mass properties. Wave propagation in jointed rock masses is significantly governed by the characteristics and orientation of discontinuities. The relationship between spatial heterogeneity (i.e., joint spacing) and wavelength for elastic waves propagating through jointed rock masses have been investigated previously. Discontinuous rock masses can be considered as an equivalent continuum material when the wavelength of the propagating elastic wave exceeds the spatial heterogeneity. However, it is unclear how stress-dependent long-wavelength elastic waves propagate through a repetitive rock-joint system with multiple joints. A preliminary numerical simulation was performed in in this study to investigate long-wavelength elastic wave propagation in regularly jointed rock masses using the three-dimensional distinct element code program. First, experimental studies using the quasi-static resonant column (QSRC) testing device are performed on regularly jointed disc column specimens for three different materials (acetal, aluminum, and gneiss). The P- and S-wave velocities of the specimens are obtained under various normal stress levels. The normal and shear joint stiffness are calculated from the experimental results using an equivalent continuum model and used as input parameters for numerical analysis. The spatial and temporal sizes are carefully selected to guarantee a stable numerical simulation. Based on the calibrated jointed rock model, the numerical and experimental results are compared.

암석내의 균열전파에 따른 유효탄성계수의 변화 (Changes of Effective Elastic Moduli due to Crack Growth in Rock)

  • 신종진;전석원
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2000년도 암반공학문제의 수치해석(Numerical Analysis in Rock Engineering Problems)
    • /
    • pp.47-55
    • /
    • 2000
  • 균열모형을 이용하여 압축 하중하에 있는 암석의 비선형 거동을 예측하는 것은 가능하다. 암석내의 균열의 성장은 암석의 이방성을 가져오며 이러한 이방성의 정도는 탄성계수의 변화로 표현될 수 있다. 본 연구에서는 균열의 성장에 따른 탄성계수의 변화를 이론적인 균열모형을 통해 예측하고, 이를 탄성파 속도 시험을 통해 구한 탄성계수와의 비교를 수행하였다. 또한, 균열모형에 사용되는 초기 암석내 존재하는 균열에 대한 정보는 암석표면의 이미지를 분석하여 구하였다.

  • PDF

절리암반의 역학적 특성 분석을 위한 역해석 모델 개발 (Developement of back-analysis model for determining the mechanical properties of jointed rock)

  • 조태진
    • 터널과지하공간
    • /
    • 제6권1호
    • /
    • pp.19-29
    • /
    • 1996
  • Back analysis model, capable of calculating the mechanical properties and the in-situ stresses of jointed rock mass, was developed based on the inverse method using a continuum theory. Constitutive equation for the behavior of jointed rock contains two unknown parameters, elastic modulus of intact rock and stiffness of joint, hence algorithm which determines both parameters simultaneously cannot be established. To avoid algebraic difficulties elastic modulus of intact rock was assumed to be known, since the representative value of which would be quite easily determined. Then, the ratio ($\beta$) of joint stiffness to elastic modulus of intact rock was assigned and back analysis for the behavior of jointed rock was carried-out. The value $\beta$ was repeatedly modified until the elastic modulus from back analysis became very comparable to the predetermined value. The joint stiffness could be calculated by multipling the ratio $\beta$ to the final result of elastic modulus. Accuracy and reliability of back analysis procedure was successfully testified using a sample model simulating the underground opening in the jointed rock mass. Applicability of back analysis model for the underground excavation in practice was also verified by analyzing the mechanical properties of jointed rock in which underground oil storage cavern were under construction.

  • PDF

암석내의 균열전파에 따른 유효탄성계수의 변화 (Changes of Effective Elastic Moduli due to Crack Growth in Rock)

  • 신종진;전석원
    • 터널과지하공간
    • /
    • 제10권3호
    • /
    • pp.301-308
    • /
    • 2000
  • 균열모형을 이용하여 압축 하중하에 있는 암석의 비선형 거동을 예측하는 것은 가능하다. 암석내의 균열의 성장은 암석의 이방성을 가져오며, 이러한 이방성의 정도는 단성계수의 변화로 표현될 수 있다. 본 연구에서는 균열의 성장에 따른 탄성계수의 변화를 이론적인 균열모형을 통해 예측하고, 이를 탄성파 속도 시험을 통해 구한 탄성계수와의 비교를 수행하였다. 또한, 균열모형에 사용되는 초기 암석내 존재하는 균열에 대한 정보는 암석표면의 이미지를 분석하여 구하였다.

  • PDF

자유단 공진시험을 이용한 암석의 탄성계수 측정 (Measurements of Elastic Moduli of Rock Cores Using Free-Free Resonance Tests)

  • 목영진
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.353-360
    • /
    • 1998
  • Dynamic measurements are used rather sparingly to determine the elastic moduli of rock cores and modulus values are not much utilized in design practice. The reason seems to result from the general perception that values obtained by dynamic measurement are much higher (about 10 times) than those determined statically. This paper presents results from dynamic and static tests on rock cores. The findings are : 1) elastic moduli can be consistently determined by laboratory seismic testing. 2) nonlear deformation characteristic of rock cores was tentatively proposed with variation in elastic modulus with strain.

  • PDF

암반터널에서의 변위파악을 위한 암반 탄성계수 추정 (Estimation of Elastic Modulus in Rock Mass for Assessing Displacment in Rock Tunnel)

  • 손무락;이소단;이원기
    • 대한토목학회논문집
    • /
    • 제31권2C호
    • /
    • pp.83-92
    • /
    • 2011
  • 암반에서의 탄성계수는 암반의 변형특성을 나타내는 매우 중요한 인자로서 암반에서의 터널굴착으로 인한 내공변위를 파악하는데 이용된다. 그럼에도 불구하고 현재까지는 암석종류 및 절리특성을 반영하여 탄성계수를 산정하는 연구는 미흡한 것으로 판단된다. 따라서, 본 연구는 다양한 암석 및 절리상태에서 암반의 탄성계수를 추정하는 방법과 그 결과를 제시하고자 한다. 이를 위해서 2차원 개별요소법에 근거한 수치해석이 수행될 것이며 이를 통해 암석과 절리상태가 고려된 터널굴착 유발 내공변위가 조사될 것이다. 조사된 변위결과는 암반에서의 원형터널에 대한 탄성이론을 역이용하여 암석종류 및 절리특성이 반영된 탄성계수를 추정하는데 사용될 것이다. 본 연구를 통해 암석종류 및 절리특성을 고려하여 추정된 탄성계수는 향후 실무에서 절리가 형성된 암반터널에서의 발생변위를 파악함에 있어서 그 활용도가 매우 클 것으로 기대된다.

자유단 공진시험을 이용한 암석의 탄성계수 측정 (Measurements o Elastic Moduli of Rock Cores Using Free-Free Resonacne Tests)

  • 목영진
    • 한국지진공학회논문집
    • /
    • 제3권4호
    • /
    • pp.95-100
    • /
    • 1999
  • 암석 코아의탄성계수 측정에 동적방법은 잘 사용되지 않을뿐만아니라 그 값은 설계에 많이 사용되지 않는다 그이유는 동적으로 결정한 탄성계수 값이 정적으로 결정된 값보다 매우 큰 것 (약 10배)으로 인식되기 때문이다. 이논문에서는 암석 코아의 동적과 정적 시험결과를 제시하였다 도출괸 결과는 :1) 실내탄성파시험으로 매우 일관성 있는 탄성계수가 결정되고 2) 변형율에 따른 암석 코아의 비선형 변형특성의 잠정적 모델이 제시되었다.

  • PDF