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Changes of Effective Elastic Moduli due to Crack Growth in Rock

Jong-Jin Shin and Seokwon Jeon

ABSTRACT Non-linear behavior of rock under compression can be predicted by a crack model. Crack growth in rock
renders rock anisotropic. The degree of anisotropy is explained in terms of elastic moduli as a function of load level. In this
study, we calculate the changes of elastic moduli due to crack growth numerically by using a crack model and compare these
values with experimental results obtained from the measurement of ultrasonic wave velocities. Image processing technique is
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used to obtain the initial crack information needed for the numerical calculation of elastic moduli.

effective elastic moduli, sliding crack model, transverse isotropy, ultrasonic wave velocity
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1. Introduction

Cracks in rock have brought about the engineering
concern because the propagation of initial cracks is
known to be the major reason for deformation and
failure of rock. Since many engineering hazards arise
from the results of the propagation of these cracks,
understanding the mechanism of crack growth and the
behavior of rock is necessary in preventing future
accidents.

Under a deviatoric compressive stress field, cracks
grow, interact and coalesce in response to the locally
induced tensile stress (Kemeny & Cook, 1987, 1991;
Kemeny, 1993; Shea & Hanson, 1998). The pre-existing
and stress-induced cracks grow in either extensile or
shear mode depending on whether the crack surfaces
close to the crack tip move perpendicular or parallel to
the instantaneous plane of propagation, respectively
(Kranz, 1983). However, cracks in a brittle material tend
to grow parallel to the maximum principal stress. This
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results in anisotropy, transverse isotropy in a two
dimensional case, which has been described by crack
models (Kemeny, 1993; Jeon, 1997).

Five independent elastic constants explaining the
behavior of rock can be
numerically calculated from a proper crack model. And
these values can also be determined from ultrasonic
Much research has been done to
describe the anisotropy using wave velocities (Jones &
Wang, 1981; Lockner et al., 1977; Sayers et al., 1990,
1995; Watanabe & Sassa, 1995; Wu et al., 1991). These
studies show that ultrasonic wave velocities change after

transversely isotropic

wave velocities.

the growth of cracks. From the results, we know that
measuring wave velocities is a good way to assess the
degree of crack propagation in rock.

In this study, changes of elastic moduli are predicted
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by a crack model, in which the input parameters such as
crack density, crack length and crack orientation are
obtained from image processing technique. At the same
time, changes of elastic moduli are determined
experimentally by measuring the ultrasonic wave

velocities.

2. Theoretical Background

Arbitrary oriented cracks in rock under loading tend
to grow parallel to the maximum principal stress, which
makes the rock have different characteristics or physical
properties from those under the initially unstressed
condition. Even isotropic rock changes into anisotropic
rock due to the results of crack growth in rock. To
predict the behavior of the rock with growing cracks,
sliding crack model is used in this study, which was
successfully used by Kemeny (1993) and Jeon (1997) to
explain the non-linear stress-strain behavior of rock.
Fig. 1 shows that a single crack under the compressive
load grows toward the direction of the maximum
principal stress, o,, which becomes a sliding crack.

Stress intensity factor of a sliding crack has the
following form for an applied uniaxial stress o,

2 t*c 2 (sc-pcdie
o

where K;=mode I stress intensity factor, 2/, = initial
crack length, 2/ =changed crack length, 7* = effective
shear stress on the crack surface, = frictional coe-
fficient, s =sin0, ¢ =cos® and @ = orientation of the
crack measured from the horizon.
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(b) Transversely isotropy

(a) A sliding crack

Fig. 1. A sliding crack and transverse isotropy due to
crack growth.

When K;= K., which is the fracture toughness for
mode I, a sliding crack initiates growth. If the grown
cracks are aligned parallel to the uniaxial loading
direction, as is usual for the brittle materials, the rock
containing many sliding cracks is rendered transversely
isotropic with five independent elastic constants,
especially in the two dimensional case (Fig. 1).

When unstressed initial rock is assumed to be the
isotropic and elastic material, there is two independent
elastic constants governing the material behavior,
Youngs modulus E and Poissons ratio v. After the onset
of crack growth, however, five independent elastic
constants or E,, E,, v,, v, and G, are required to describe
the behavior of the transverse isotropic material. And
these five values are called “effective elastic moduli” in
the sense that they change as the cracks grow and they
represent the extent of the anisotropy.

Elastic constitutive relations for transverse isotropy
are as follows:

le.] [UE, —v/E,—vyE, 0 0 0 oy
g| -vvE, VE —vwE, 0 0 0 |o,
&|_|VYE,-vyE, IVE, 0 0 0o, @
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Y L O 0 0 0 0 UGy

Here, Z is the axis of symmetry of transverse isotropy
and XY plane is the plane of isotropy. E, and v, are
Young's modulus and Poisson's ratio in the plane of
isotropy. E, and v, are Young's modulus and Poisson's
ratio in a direction normal to the plane of isotropy. G, is
the shear modulus in planes normal to the plane of
isotropy.

To derive five effective elastic moduli, the displace-
ment of an elastic body containing cracks is required to
determine by using Hooke's law for the elastic
displacements and Castigliano’s theorem for the crack-
induced displacements. According to Castigliano's
theorem, the component v, of the displacement vector u
in the direction of the load P, is given as follows
(Reismann & Pawlik, 1980; Sokolnikoff, 1956):

o o
I"api
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U* is the strain energy stored in the body. And the



energy release rate G has the following form as a
function of three stress intensity factors, K, K, and K,:

2 2 2

K Kin

G= E_’+E’+—(1+v) 4)
19U*

G= 331 (5)

By integrating G over the crack length ! and using
equations (3) and (4), the total displacements u, of an

elastic body containing cracks are obtained as a sum of

the displacements of an elastic body u, and the
displacements due to the crack growth, as follows:

w = Dl 2Gdlj‘
2 2
aln K Ky Km
:ue+2¥){[ 2{E,+ ! (1+v)}dl:l ©

Thus, considering N cracks, the strain in the direction
of the load, Y axis is calculated as follows:

-2y 2224
g, = n(VOI)ZIZ(sc -ucp) clln]Oi

N

where (vol) = volume of the specimen containing N
cracks and 7 denotes the i-th crack. Therefore, one of the
effective elastic moduli, E, can be given as shown
below:

E

N
222 li
n(vol)zlo‘(s —ue;) ¢ lnr

o1

®)

In the same manner, we can obtain the other effective
elastic moduli.

E,=- E
N 2
n(vol)2 ‘”{( ) }
- 9)
G,=- G
2
e (el

- (10)

49

\
Vl =
< 2 yA
b1 229 &
n(VOl)lzzlfoi(slcl uey) ¢ lng
(1)
8 N
V+(V01)2_‘11§i(s] j—HC )C(01 )
V2= ; :
222 4
n(vol)zfi(sici—llci) ¢ lnz;-i a2

3. Initial Crack Information

Statistical data of the pre-existing cracks in rock are
required to calculate effective elastic moduli according
to crack growth. The possible ways to obtain these
information about the initial cracks are creep test and
compression test with resin injection for observing the
distribution of crack length and crack orientation and
the scanline survey, a procedure that involves the
counting of the number of intersections that an array of
parallel lines make with cracks in a plane section
(Underwood, 1970). But the more accurate way for the
crack information is to measure the crack length, the
crack orientation and the number of cracks directly from
the images such as video images or SEM (Scanning
This method needs
special care to prepare the rock section because of

Electron Microscope) images.

surface damages and cracking on the section that we
want to examine.

Fig. 2. SEM image of Yeosan marble with 256 grayscales.
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Fig. 3. Binary image of Yeosan marble.
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Fig. 4. Crack orientation vs. crack length.

SEM image of Yeosan marble shown in Fig. 2 is used
for the direct measurement of crack data. NIH (US
National Institute of Health) Image program enables us
to process this digitized image with 256 grayscales.
Thresholding, one of the menus on the program is used
to segment an image into objects of interest, which is
the cracks, and the background on the basis of gray
level. Fig. 3 shows the binary image where only cracks
are black with the white background. Finally, this binary
image is used to obtain the crack information such as
crack density, crack length and crack orientation.

The number of cracks observed in the image is 167 on
the area of 14.08 mm’ and the relation between crack
length and crack orientation is shown in Fig. 4. From
this figure we find that crack orientations are almost
randomly distributed and 95% of 167 cracks are less
than 1mm in length. In the later step these crack data are
in use for calculating effective elastic moduli using
crack model.

4, Measurement of Ultrasonic Wave
Velocities :

Ultrasonic wave velocity measurement is used to
determine effective elastic moduli experimentally for
the comparison with the values from the theoretical
work. Ultrasonic wave velocities have been measured by
many researchers for describing the anisotropic
behavior of rock. They all agreed that ultrasonic wave
velocity testing could be an appropriate way to assess
the degree of crack propagation in rock.

As transverse isotropy is assumed, five independent
measurements of ultrasonic wave velocity are required
to determine five effective elastic moduli in experiment.
The compliance matrix C, a relationship between stress

and strain, is expressed in equation (13):

(cx [C11C1aCi3 0 0 0] (ex

Syl |CpCCi3 0 0 0] g,

0IZ=C13C13C33 0 00 € Ce=(Cy=Cyy)2
0 0 0C,0 0 eI

Tyz 44 Yyz

T [0 0 0 0Cy 0]l

[t L0 0 0 0 0 Cf fy

(13)

As noted earlier, Z is the axis of symmetry of
transverse isotropy. The components of matrix C can be
described as a function of ultrasonic wave velocities, as
follows (Jones & Wang, 1981; Liao et al., 1997):

2 2
Cll = pr,y C33=pvp,z
2 2
C44=st,zx C66= st,yx
2
C,+C C,,-C
C13=,\/(ZPV‘2,,45_ 11'; 33~C44)—( 1 . 33) ~Cy,

(14)

Where p =P (compressive) wave, s = S (shear) wave,
y = wave direction : Y axis, z = wave direction : Z axis,
yx = wave direction : Y axis and polarization : X axis on
YX plane, zx = wave direction : Z axis and polarization
: X axis on ZX plane, 45 =45° angled direction on the
YZ plane. For example, V,, means P wave velocity
measured in the direction of Z axis and V,, denotes S

$,2%

wave velocity measured in the direction of Z axis while
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Fig. 5. Yeosan marble for the experiment.

A

S wave transducers are polarized in the direction of X
axis. Using equation (14) and the inverse matrix of
matrix C, we can obtain five effective elastic moduli
experimentally.

Fig. 5 shows the experimental material, Yeosan
marble. The shape of Yeosan marble is rectangular with
4 flat edges which make it possible to measure P wave
velocity in the 45° angled direction on the YZ plane.
Since the rock specimen is thin and the maximum
principal stress is applied in the direction of Y axis,
cracks are expected to grow in the direction of Y axis.
Therefore, Z axis becomes the axis of symmetry of
transverse isotropy.

There are several timing points which notify the
arrival of P and S waves through the rock: The first
arrival of the waves is defined as ‘First Break’ and the
maximum position of the first arrived pulse is defined as
‘First Peak’. First peak is used in our experiment
because of easier measurement of elapsed time.

For more accurate measurement of wave arrival, two
uniform samples (Aluminum alloy 6061-T6, Acryl) are
used for zero calibration, which means the calibration
for elapsed time when there is no specimen between two
opposite transducers. When two kinds of uniform
samples with two and four inches long are in use for
measuring the elapsed time through the rock, results are
shown in Fig. 6. In this figure, the time for zero
calibration is derived when the length is zero. The
values for P wave and S wave are 0.91 usec and 0.73
usec, respectively.
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Fig. 6. Zero calibration using two uniform samples (Alu-
minum alloy 6061-T6, Acryl).

5. Results and Discussion

Effective elastic moduli can be determined from the
theoretical basis using a crack model and from the
experimental work using ultrasonic wave velocities.
Then, we will compare these effective elastic moduli to
validate the efficacy of crack model.

Liao et al. (1997) also measured ultrasonic wave
velocities on a cylindrical rock specimen with and
without a tensile load applied at the ends. They tried to
determine five independent elastic constants from a
transversely isotropic rock, argillite in the initial state.
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However, the rock we use here is originally isotropic:
rock can be assumed to be isotropic from wave
velocities at different directions. This isotropic rock
changes into transversely isotropic rock due to crack
growth in rock. Despite the difference between two
experiments, the axis of symmetry is in the same
direction. The axis of symmetry is perpendicular to the
loading direction, that is Y axis.

To satisfy the requirement that the axis of symmetry
has to be perpendicular to the longitudinal axis, the
shape of rock specimen is a thin rectangle as mentioned
earlier in the previous part. This rock behaves like a
transversely isotropic material after crack growth under
the uniaxial compression.

First, we measured wave velocities during the
uniaxial stress applied. Wave velocities increased at the
early loading stage because open cracks in rock had
closed. The crack model we use in this study does not
describe the crack closure and the increase of elastic
constants. Therefore, we measured wave velocities with
zero load after loading an additional 1 ton at each stage.
Fig. 7 shows the results of ultrasonic wave velocities.

From this figure, we can know that there is no region
where velocity increases. Only region where velocity
decreases exists because of crack growth after the 65%
load of rock failure. P and S wave velocities in the

. Vp,45 L] \ @
s Vpz =1

25 + Vsyx
204 v Vs

% Load

Fig. 7. Ultrasonic wave velocities as a function of load
level (p =P (compressive) wave, s =S (shear)
wave, y = wave direction: Y axis, z = wave di-
rection : Z axis, yx = wave direction : Y axis and
polarization : X axis on YX plane, zx =wave
direction : Z axis and polarization : X axis on ZX
plane, 45=45" angled direction on the YZ
plane).
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Fig. 8. Five effective elastic moduli determined from
ultrasonic wave velocities.

direction of the axis of symmetry, Z axis decrease
sharply because the cracks grow perpendicular to Z axis
and they delay the arrival of waves, whereas P and S
wave velocities in the isotropic planes parallel to XY
plane decrease a little. The difference of wave velocities
between different directions increases as the load
increases, and consequently the degree of anisotropy
increases.

From five wave velocities, five effective elastic
moduli are calculated as shown in Fig. 8. E,, v, are
elastic properties of isotropic planes, and E,, v,, G, are
elastic properties of planes that include the axis of
symmetry. Though E, decreases smoothly as the load
increases, E, decreases sharply. In Poissons ratio, v,
decreases in a small amount of value, whereas Vv,
increases.

We have determined five effective elastic moduli
experimentally until now. These elastic moduli can also
be determined theoretically as described earlier. We
calculated the values numerically from the initial crack
information that we observed using SEM. The number
of cracks found on the area of 14.08 mm’ was 167 and
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image processing result (white bar)
Generated log-normal distribution (black bar)
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Fig. 9. Histogram of crack length.
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Fig. 10. Comparison of effective elastic moduli between
theoretical and experimental methods.

crack orientation was uniformly distributed. The length
of cracks is generated following log-normal distribution
such as Fig. 9.

To compare the values from experimental and theo-
retical work, we normalized effective Youngs modulus
with original value at zero load. Smaller dots in Fig. 10
indicate ten sets of effective elastic moduli calculated
numerically and larger dots are values determined from
ultrasonic wave velocity measurement. Crack model

demonstrates well the
tendencies in effective elastic moduli.

increasing and decreasing

6. Conclusions

This study is focused on the validation of efficacy to
predict the under the
compression by using a mechanical crack model, that is,
sliding crack model and by using ultrasonic wave

rock behavior uniaxial

velocities experimentally.

Due to crack growth which tends to be parallel to the
loading direction, isotropic rock at the initial stage
changes into transversely isotropic material. Non-linear
behavior of transversely isotropic rock is described
using five effective elastic moduli determined
theoretically from crack model and experimentally from
ultrasonic wave velocities. These two values show
similar increasing and decreasing tendencies. E,
decreases smoothly with crack growth, but E, and G,
decrease sharply. v, decreases as cracks grow while v,
increases.

If the initial crack information is acquired from such
ways as direct measurement used in this study and
scanline survey, the crack model can predict the non-
linear behavior of rock successfully. In addition, this

method can be applied to the coupled effect of rock.
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