• Title/Summary/Keyword: elastic rock

Search Result 341, Processing Time 0.029 seconds

Influence of time-dependency on elastic rock properties under constant load and its effect on tunnel stability

  • Aksoy, C.O.;Aksoy, G.G. Uyar;Guney, A.;Ozacar, V.;Yaman, H.E.
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In structures excavated in rock mass, load progressively increases to a level and remains constant during the construction. Rocks display different elastic properties such as Ei and ʋ under different loading conditions and this requires to use the true values of elastic properties for the design of safe structures in rock. Also, rocks will undergo horizontal and vertical deformations depending on the amount of load applied. However, under constant loads, values of Ei and ʋ will vary in time and induce variations in the behavior of the rock mass. In some empirical equations in which deformation modulus of the rock mass is taken into consideration, elastic parameters of intact rock become functions in the equation. Hence, the use of time dependent elastic properties determined under constant loading will yield more reliable results than when only constant elastic properties are used. As well known, rock material will play an important role in the deformation mechanism since the discontinuities will be closed due to the load. In this study, Ei and ʋ values of intact rocks were investigated under different constant loads for certain rocks with high deformation capabilities. The results indicated significant time dependent variations in elastic properties under constant loading conditions. Ei value obtained from deformability test was found to be higher than the Ei value obtained from the constant loading test. This implies that when static values of elastic properties are used, the material is defined as more elastic than the rock material itself. In fact, Ei and ʋ values embedded in empirical equations are not static. Hence, this workattempts to emerge a new understanding in designing of safer structures in rock mass by numerical methods. The use of time-dependent values of Ei and ʋ under different constant loads will yield more accurate results in numerical modeling analysis.

Elastic Wave Propagation in Jointed Rock Mass (절리암반에서의 탄성파 전파 특성)

  • Cha, Min-Su;Cho, Gye-Chun;Baak, Seung-Hyoung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.515-520
    • /
    • 2005
  • The behavior of jointed rock mass is much different from that of intact rock due to the presence of joints. Similarly, the characteristics of elastic wave propagation in jointed rock are considerably different from those of intact rock. The propagation of elastic waves in jointed rock is greatly dependent on the state of stress. The roughness, filling materials, and spacing of joints also affect wave propagation in jointed rock. If the wavelength of elastic waves is much larger than the spacing between joints, wave propagation in jointed rock mass can be considered as wave propagation in equivalent continuum. A rock resonant column testing apparatus is made to measure elastic waves propagating through jointed rock in the state of equivalent continuum. Three types of wave, i.e, torsional, longitudinal and flexural waves are monitored during rock resonant column tests. Various roughness and filling materials are applied to joints, and rock columns with various spacings are used to understand how these factors affect wave propagation under a small strain condition. The experimental results suggest that the characteristics of wave propagation in jointed rock mass are governed by the state of stress and influenced by roughness, filling materials and joint spacings.

  • PDF

Estimation of rock tensile and compressive moduli with Brazilian disc test

  • Wei, Jiong;Niu, Leilei;Song, Jae-Joon;Xie, Linmao
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.353-360
    • /
    • 2019
  • The elastic modulus is an important parameter to characterize the property of rock. It is common knowledge that the strengths of rocks are significantly different under tension and compression. However, little attention has been paid to the bi-modularity of rock. To validate whether the rock elastic moduli in tension and compression are the same, Brazilian disc, direct tension and compression tests were conducted. A horizontal laser displacement meter and a pair of vertical and transverse strain gauges were applied. Four types of materials were tested, including three types of rock materials and one type of steel material. A comprehensive comparison of the elastic moduli based on different experimental results was presented, and a tension-compression anisotropy model was proposed to explain the experimental results. The results from this study indicate that the rock elastic modulus is different under tension and compression. The ratio of the rock elastic moduli under compression and tension ranges from 2 to 4. The rock tensile moduli from the strain data and displacement data are approximate. The elastic moduli from the Brazilian disc test are consistent with those from the uniaxial tension and compression tests. The Brazilian disc test is a convenient method for estimating the tensile and compressive moduli of rock materials.

Preliminary numerical study on long-wavelength wave propagation in a jointed rock mass

  • Chong, Song-Hun;Kim, Ji-Won;Cho, Gye-Chun;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Non-destructive exploration using elastic waves has been widely used to characterize rock mass properties. Wave propagation in jointed rock masses is significantly governed by the characteristics and orientation of discontinuities. The relationship between spatial heterogeneity (i.e., joint spacing) and wavelength for elastic waves propagating through jointed rock masses have been investigated previously. Discontinuous rock masses can be considered as an equivalent continuum material when the wavelength of the propagating elastic wave exceeds the spatial heterogeneity. However, it is unclear how stress-dependent long-wavelength elastic waves propagate through a repetitive rock-joint system with multiple joints. A preliminary numerical simulation was performed in in this study to investigate long-wavelength elastic wave propagation in regularly jointed rock masses using the three-dimensional distinct element code program. First, experimental studies using the quasi-static resonant column (QSRC) testing device are performed on regularly jointed disc column specimens for three different materials (acetal, aluminum, and gneiss). The P- and S-wave velocities of the specimens are obtained under various normal stress levels. The normal and shear joint stiffness are calculated from the experimental results using an equivalent continuum model and used as input parameters for numerical analysis. The spatial and temporal sizes are carefully selected to guarantee a stable numerical simulation. Based on the calibrated jointed rock model, the numerical and experimental results are compared.

Changes of Effective Elastic Moduli due to Crack Growth in Rock (암석내의 균열전파에 따른 유효탄성계수의 변화)

  • 신종진;전석원
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.47-55
    • /
    • 2000
  • Non-linear behavior of rock under compression can be predicted by a crack model. Crack growth in rock renders rock anisotropic. The degree of anisotropy is explained in terms of elastic moduli as a function of load level. In this study, we calculate the changes of elastic moduli due to crack growth numerically by using a crack model and compare these values with experimental results obtained from the measurement of ultrasonic wave velocities. Image processing technique is used to obtain the initial crack information needed for the numerical calculation of elastic moduli.

  • PDF

Developement of back-analysis model for determining the mechanical properties of jointed rock (절리암반의 역학적 특성 분석을 위한 역해석 모델 개발)

  • Cho, Tae-Chin
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.19-29
    • /
    • 1996
  • Back analysis model, capable of calculating the mechanical properties and the in-situ stresses of jointed rock mass, was developed based on the inverse method using a continuum theory. Constitutive equation for the behavior of jointed rock contains two unknown parameters, elastic modulus of intact rock and stiffness of joint, hence algorithm which determines both parameters simultaneously cannot be established. To avoid algebraic difficulties elastic modulus of intact rock was assumed to be known, since the representative value of which would be quite easily determined. Then, the ratio ($\beta$) of joint stiffness to elastic modulus of intact rock was assigned and back analysis for the behavior of jointed rock was carried-out. The value $\beta$ was repeatedly modified until the elastic modulus from back analysis became very comparable to the predetermined value. The joint stiffness could be calculated by multipling the ratio $\beta$ to the final result of elastic modulus. Accuracy and reliability of back analysis procedure was successfully testified using a sample model simulating the underground opening in the jointed rock mass. Applicability of back analysis model for the underground excavation in practice was also verified by analyzing the mechanical properties of jointed rock in which underground oil storage cavern were under construction.

  • PDF

Changes of Effective Elastic Moduli due to Crack Growth in Rock (암석내의 균열전파에 따른 유효탄성계수의 변화)

  • 신종진;전석원
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.301-308
    • /
    • 2000
  • Non-linear behavior of rock under compression can be predicted by a crack model. Crack growth in rock renders rock anisotropic. The degree of anisotropy is explained in terms of elastic moduli as a function of load level. In this study, we calculate the changes of elastic moduli due to crack growth numerically by using a crack model and compare these values with experimental results obtained from the measurement of ultrasonic wave velocities. Image processing technique is used to obtain the initial crack information needed for the numerical calculation of elastic moduli.

  • PDF

Measurements of Elastic Moduli of Rock Cores Using Free-Free Resonance Tests (자유단 공진시험을 이용한 암석의 탄성계수 측정)

  • 목영진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.353-360
    • /
    • 1998
  • Dynamic measurements are used rather sparingly to determine the elastic moduli of rock cores and modulus values are not much utilized in design practice. The reason seems to result from the general perception that values obtained by dynamic measurement are much higher (about 10 times) than those determined statically. This paper presents results from dynamic and static tests on rock cores. The findings are : 1) elastic moduli can be consistently determined by laboratory seismic testing. 2) nonlear deformation characteristic of rock cores was tentatively proposed with variation in elastic modulus with strain.

  • PDF

Estimation of Elastic Modulus in Rock Mass for Assessing Displacment in Rock Tunnel (암반터널에서의 변위파악을 위한 암반 탄성계수 추정)

  • Son, Moorak;Li, Sudan;Lee, Wonki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2C
    • /
    • pp.83-92
    • /
    • 2011
  • Elastic modulus in rockmass is an important factor to represent the characteristic of rock deformation and is used to estimate the displacement due to tunnel excavation. Nevertheless, the study to estimate the elastic modulus, which condisiders the rock type and joint characteristics (joint shear strength and joint inclination angle), has been done in less frequency. Accordingly, this study is aimed at providing the method to estimate the elastic modulus of rockmass in the various rock and joint conditons and the results grasped from the study. For this purpose, the 2D discrete numerical analysis will be carried out and the displacements due to tunnel excavation will be investigated with the consideration of rock and joint conditions. Then the displacement results will be used to estimate the elastic modulus of rockmass in which rock and joint conditions are considered with the utilization of the elastic theory of circular tunnel. The results of elastic modulus, which considers the conditions of various rock and joint, would be expected to have a great practical use in field.

Measurements o Elastic Moduli of Rock Cores Using Free-Free Resonacne Tests (자유단 공진시험을 이용한 암석의 탄성계수 측정)

  • 목영진
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.95-100
    • /
    • 1999
  • Dynamic measurements are used rather sparingly to determine the elastic modull of rock cores and modulus values are not much utilized in design practice. The reason seems to result from the general perception that values obtained by dynamic measurement are much higher (about 10 times) than those determined statically. This paper presents results from dynamic and static tests on rock cores. The findings are: 1) elastic modull can be consistently determined by laboratory seismic testing. 2) nonlinear deformation characteristics of rock cores was tentatively proposed with variation in elastic modulus with strain.

  • PDF