• 제목/요약/키워드: elastic problem

검색결과 815건 처리시간 0.026초

Plastic behavior of circular discs with temperature-dependent properties containing an elastic inclusion

  • Zarandi, Somayeh Bagherinejad;Wang, Yun-Che;Novozhilova, Olga V.
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.731-743
    • /
    • 2016
  • Plastic behaviors, based on the von Mises yield criterion, of circular discs containing a purely elastic, circular inclusion under uniform temperature loading are studied with the finite element analysis. Temperature-dependent mechanical properties are considered for the matrix material only. In addition to analyzing the plane stress and plane strain disc, a 3D thin disc and cylinder are also analyzed to compare the plane problems. We determined the elastic irreversible temperature and global plastic collapse temperature by the finite element calculations for the plane and 3D problem. In addition to the global plastic collapse, for the elastically hard case, the plane stress problem and 3D thin disc may exhibit a local plastic collapse, i.e. significant pile up along the thickness direction, near the inclusion-matrix interface. The pileup cannot be correctly modeled by the plane stress analysis. Furthermore, due to numerical difficulties originated from large deformation, only the lower bound of global plastic collapse temperature of the plane stress problem can be identified. Without considerations of temperature-dependent mechanical properties, the von Mises stress in the matrix would be largely overestimated.

An analytical solution of the annular plate on elastic foundation

  • Pavlou, D.G.;Vlachakis, N.V.;Pavlou, M.G.
    • Structural Engineering and Mechanics
    • /
    • 제20권2호
    • /
    • pp.209-223
    • /
    • 2005
  • A new method for deriving analytical solution of the annular elastic plate on elastic foundation under axisymmetric loading is presented. The formulation is based on application of Hankel integral transforms and Bessel functions' properties in the corresponding boundary-value problem. A representative example is studied and the obtained solution is compared with published numerical results indicating excellent agreement.

Thick laminated circular plates on elastic foundation subjected to a concentrated load

  • Sheng, Hongyu
    • Structural Engineering and Mechanics
    • /
    • 제10권5호
    • /
    • pp.441-449
    • /
    • 2000
  • In this study, the state equation for axisymmetric bending of laminated transversely isotropic circular plates on elastic foundation is established on the basis of three-dimensional elasticity. By using the expansions of Bessel functions, an analytical solution of the problem is presented. As a result, all the fundamental equations of three-dimensional elasticity can be satisfied exactly and all the independent elastic constants can be fully taken into account. Furthermore, the continuity conditions at the interfaces of plies can also be satisfied.

계면균열해석에 대한 경계요소법의 응용 (I) : 탄성-탄성 문제 (Application of Boundary Element Methods to Interface Crack Problems (I) : Elastic-Elastic Problem)

  • 이상순;김정규;김태형;박건우;황종근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.87-94
    • /
    • 1996
  • The stress intensity factor for an inter(ace crack in dissimilar elastic-elastic bimaterials is presented and the boundary element analysis is performed. It is shown that the proposed method produces the accurate and effective numerical results.

  • PDF

Effects of elastic foundation on the dynamic stability of cylindrical shells

  • Ng, T.Y.;Lam, K.Y.
    • Structural Engineering and Mechanics
    • /
    • 제8권2호
    • /
    • pp.193-205
    • /
    • 1999
  • A formulation for the dynamic stability analysis of cylindrical shells resting on elastic foundations is presented. In this previously not studied problem, a normal-mode expansion of the partial differential equations of motion, which includes the effects of the foundation as well as a harmonic axial loading, yields a system of Mathieu-Hill equations the stability of which is analyzed using Bolotin's method. The present study examines the effects of the elastic foundation on the instability regions of the cylindrical shell for the transverse, longitudinal and circumferential modes.

건성마찰력을 받는 탄성재료의 안정성에 미치는 중간 지지의 효과 (Effect of an Intermediate Support on the Stability of Elastic Material Subjected to Dry Friction Force)

  • 류시웅;장탁순
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.129-135
    • /
    • 2004
  • This paper discussed on the effect of an intermediate support on the stability of elastic material subjected to dry friction force. It is assumed in this paper that the dry frictional force between a tool stand and an elastic material can be modeled as a distributed follower force. The elastic material on the friction material is modeled for simplicity into an elastic beam on Winkler-type elastic foundation. The stability of beams on the elastic foundation subjected to distributed follower force is formulated by using finite element method to have a standard eigenvalue problem. The first two eigen-frequencies are obtained to investigate the dynamics of the beam. The eigen-frequencies yield the stability bound and the corresponding unstable mode. The considered beams lose its stability by flutter or divergence, depending on the location of intermediate support.

Forced vibration of the elastic system consisting of the hollow cylinder and surrounding elastic medium under perfect and imperfect contact

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.113-123
    • /
    • 2017
  • The bi-material elastic system consisting of the circular hollow cylinder and the infinite elastic medium surrounding this cylinder is considered and it is assumed that on the inner free face of the cylinder a point-located axisymmetric time harmonic force, with respect to the cylinder's axis and which is uniformly distributed in the circumferential direction, acts. The shear-spring type imperfect contact conditions on the interface between the constituents are satisfied. The mathematical formulation of the problem is made within the scope of the exact equations of linear elastodynamics. The focus is on the frequency-response of the interface normal and shear stresses and the influence of the problem parameters, such as the ratio of modulus of elasticity, the ratio of the cylinder thickness to the cylinder radius, and the shear-spring type parameter which characterizes the degree of the contact imperfectness, on these responses. Corresponding numerical results are presented and discussed. In particular, it is established that the character of the influence of the contact imperfection on the frequency response of the interface stresses depends on the values of the vibration frequency of the external forces.

고정밀도 조립을 위한 용접 변형의 해석에 관한 연구 (A Study on the Simulation of Welding Deformation for accurate Assembling)

  • 성기찬;장경복;정진우;강성수
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.129-134
    • /
    • 2001
  • It is essential to predict the welding deformation at assembly stage, to increase productivity through mechanization and automation effectively. A practical analysis method appled for production engineering was proposed to simulate the deformation of arc welding, with an analytical model using finite element method solving thermal-elastic-plastic behavior. In this research, for accurate assembling, 3-D thermal-elastic-plastic finite element model is used to simulate the out-of-plane deformation caused by arc welding. Efforts have been made to find out the efficient method to improve the reliability and accuracy of the numerical calculation. Each of theories of small and large deformation is applied in solving 3-D thermal-elastic-plastic problem to compare with their efficiency about calculation imes and solution accuracy. When solid elements are used in a bending problem of a plate, phenomenon that the predictive deformation is more than that of actual survey is observed. To prevent this phenomenon, reduced integration method for element is employed instead of full integration that is generally used in 3-D thermal-elastic-plastic analysis.

  • PDF

SPH에 가상일 원리를 적용한 탄성 접촉 알고리즘 (An elastic contact algorithm in SPH by virtual work principle)

  • 서송원;민옥기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1346-1351
    • /
    • 2003
  • There is few research about contact problem in SPH because it is primarily suitable to analyze the large deformation problem. However, an elasto-plastic problem with small deformation need to be considered about contact characteristics. The numerical formulating methods for SPH is induced to be able to obtain solutions based on a variational method in contact problem. The contact algorithm presented is applied to the elastic impact problem in 1D and 2D. The results show thai an imaginary tension and a numerical instability which happen in impacting between different materials can be removed and contact forces which could not have been calculated are able to obtain.

  • PDF

Prediction of contact lengths between an elastic layer and two elastic circular punches with neural networks

  • Ozsahin, Talat Sukru;Birinci, Ahmet;Cakiroglu, A. Osman
    • Structural Engineering and Mechanics
    • /
    • 제18권4호
    • /
    • pp.441-459
    • /
    • 2004
  • This paper explores the potential use of neural networks (NNs) in the field of contact mechanics. A neural network model is developed for predicting, with sufficient approximation, the contact lengths between the elastic layer and two elastic circular punches. A backpropagation neural network of three layers is employed. First contact problem is solved according to the theory of elasticity with integral transformation technique, and then the results are used to train the neural network. The effectiveness of different neural network configurations is investigated. Effect of parameters such as load factor, elastic punch radii and flexibilities that influence the contact lengths is also explored. The results of the theoretical solution and the outputs generated from the neural network are compared. Results indicate that NN predicted the contact length with high accuracy. It is also demonstrated that NN is an excellent method that can reduce time consumed.