• Title/Summary/Keyword: elastic medium

Search Result 341, Processing Time 0.031 seconds

A Study on the Actual Wearing Conditions and Preferred Designs of School Uniforms for High School Girls (여자 고등학생 교복 착용실태와 선호 디자인 연구)

  • Choi, Hae-Joo
    • Journal of the Korean Society of Costume
    • /
    • v.62 no.4
    • /
    • pp.207-217
    • /
    • 2012
  • The function of the school uniform is to represent the role of a student and also to restrict the scope of action for the student. Many students wear school uniforms for the most of their daily life. So the school uniform is very important for students during the school days. The purpose of this study was to suggest the fundamental information for the development of the school uniform design based on actual wearing conditions and preferred designs. Photos of school uniforms of 61 girls' high schools in Seoul were analyzed. Surveys of actual wearing conditions and preferred designs were investigated. The major conclusions of the study were as the following: 1. Most of the high school girls wore the uniform jackets that had tailored collars, were single breasted, slightly fitted, and that have a medium length between the waistline and hipline. Many students wore skirts with various pleats and knee length. Many school uniforms were navy blue and grey. 2. Many students bought ready-to-wear school uniforms from agencies with their parents. When they bought the school uniforms, they tried it on and confirmed the sizes on their own. However, since they didn't know the size systems, and they had to repair the size and design of the school uniforms. Students felt uncomfortable with how the shoulders and sleeves fit. 3. Uniform Jackets with tailored collars, single breasted, slightly fitted, and a short waistline length were preferred. Pleats skirts with knee length or upper-knee length were preferred. Navy blue and grey colors, and elastic fabrics were preferred. 4. When comparing the actual wearing conditions and preferred designs of school uniforms, there were a few differences in styles, but overall, students preferred shorter lengths of jackets and skirts. It is considered to reflect the fashion trends and the students' pursuit for beauty.

Development of a Design Theory of a Pressure Vessel with Combined Structure of the Metal and the Composite (금속재와 복합재 이종구조물로 된 압력용기의 설계이론 개발)

  • Lee Bang-Eop;Kim Won-Hoon;Koo Song-Hoe;Son Young-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.23-30
    • /
    • 2006
  • A thery was developed to design a high pressure vessel with combined structure of the metal and the composite to withstand the pressure of several tens of thousands psias to reduce the weight of the impulse motor which produces high level of thrust within several tens of seconds. The elastic-plastic stress analyses were carried out to prove the validity of the design theory. A combustion chamber of the impulse motor was designed by the design theory, fabricated, and tested by the hydraulic pressure and the static firings. The bursting pressures from the tests were compared to those predicted by the design theory and the stress analyses and found to be almost the same. It will be possible to design the high pressure vessel with combined structure of the metal and the composite very easily by the proposed design theory.

Elastic solutions due to a time-harmonic point load in isotropic multi-layered media

  • Lin, Gao;Zhang, Pengchong;Liu, Jun;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.327-355
    • /
    • 2016
  • A new analytical derivation of the elastodynamic point load solutions for an isotropic multi-layered half-space is presented by means of the precise integration method (PIM) and the approach of dual vector. The time-harmonic external load is prescribed either on the external boundary or in the interior of the solid medium. Starting with the axisymmetric governing motion equations in a cylindrical coordinate system, a second order ordinary differential matrix equation can be gained by making use of the Hankel integral transform. Employing the technique of dual vector, the second order ordinary differential matrix equation can be simplified into a first-order one. The approach of PIM is implemented to obtain the solutions of the ordinary differential matrix equation in the Hankel integral transform domain. The PIM is a highly accurate algorithm to solve sets of first-order ordinary differential equations and any desired accuracy of the dynamic point load solutions can be achieved. The numerical simulation is based on algebraic matrix operation. As a result, the computational effort is reduced to a great extent and the computation is unconditionally stable. Selected numerical trials are given to validate the accuracy and applicability of the proposed approach. More examples are discussed to portray the dependence of the load-displacement response on the isotropic parameters of the multi-layered media, the depth of external load and the frequency of excitation.

Pulmonary Vascular Changes in Systemic Pulmonary Anastomosis:An Experimental Study (폐동맥-쇄골하동맥 문합시의 폐동맥 변화에 관한 실험적 연구)

  • 박영관
    • Journal of Chest Surgery
    • /
    • v.3 no.2
    • /
    • pp.91-106
    • /
    • 1970
  • Two groups of left pulmonary-subclavian artery anastomosis were done in 26 adult mongorel dogs. For the first group. the distal end of the subclnvian artery was nnastomosed to the side of the left pulmonary artery, and for the second group, the subclavian end wns anastomosed to the proximal end of the left lower lobe pulmonary artery. Among them, 6 died of bleeding or anesthetic failure during the day of operation, 10 survived 1 to 106 days and the other 10 were sacrificed at various interval. To investigate the relationship between hemodynamic stress and temporal evolution of the pulmonary vascular lesions. the pulmona try and femoral artery pressures, arteriogram and pathohistological specimens were obtained. The following results were obtained. 1. The postoperative pulmonary artery pressures were within normal limits except 2 dogs in the first group, but in nil 12 dogs of the second group, they were in moderate to maked pulmonary hypertension level. 2 After subclavian pulmonary anastomosis, both groups dogs showed increased femond artery pulse pressure. 3. The pulmonary vascular changes were more severe and appeared earlier in the second group dogs compared with the first group.4. The earliest vascular changes appeared in the media of the small muscular arteries and arterioles. 5. Various vascular chaDges were produced in 2 or 3 months. Thereafter, the changes were stationary. 6. Among the first group, two long-term servivors (No. 705 & 713) which had normal pulmonary artery pressure under the anesthesia, also showed various vascular changes as other pulmonary hypertensive dogs. 7. In the early stage medial hypertrophy. interruptio~l of elastic lamellae were found in the small muscular arteries and arterioles, which were followed by intimal proliferation and thrombosis. These findings may suggest some evidences of trauma to the vessels. 8. Pulmonary arteriograms showed irregularity of the intima of the large and medium sized arteries, abrupt ending of some of the small arteries and narrowing of the anastomosis.

  • PDF

Macroscopic High-Temperature Structural Analysis Model of Small-Scale PCHE Prototype (II) (소형 PCHE 시제품에 대한 거시적 고온 구조 해석 모델링 (II))

  • Song, Kee-Nam;Lee, Heong-Yeon;Hong, Sung-Deok;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1137-1143
    • /
    • 2011
  • The IHX (intermediate heat exchanger) of a VHTR (very high-temperature reactor) is a core component that transfers the high heat generated by the VHTR at $950^{\circ}C$ to a hydrogen production plant. Korea Atomic Energy Research Institute manufactured a small-scale prototype of a PCHE (printed circuit heat exchanger) that was being considered as a candidate for the IHX. In this study, as a part of high-temperature structural integrity evaluation of the small-scale PCHE prototype, we carried out high-temperature structural analysis modeling and macroscopic thermal and elastic structural analysis for the small-scale PCHE prototype under small-scale gas-loop test conditions. The modeling and analysis were performed as a precedent study prior to the performance test in the small-scale gas loop. The results obtained in this study will be compared with the test results for the small-scale PCHE. Moreover, these results will be used in the design of a medium-scale PCHE prototype.

Comparison of Vibrational Displacements Generated by Different Types of Surface Source in a Soft Tissue (여러 종류의 표면 진동원에 대한 연조직에서의 진동 변위 비교)

  • Park, Jeong Man;Kwon, Sung-Jae;Jeong, Mok-Kun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.469-483
    • /
    • 2012
  • The propagation characteristics of a mechanical wave in human soft tissue depend on its elastic properties. Investigation of these propagation characteristics is of paramount importance because it may enable us to diagnose cancer or tumor from the vibration response of the tissue. This paper investigates and compares displacement patterns generated in soft tissue due to several forms of low-frequency vibration sources placed on a surface. Among vibration sources considered are a normal load, tangential load, and antiplane shear load. We derive analytical expressions for displacements in viscoelastic single layers, and calculate displacement patterns in half space and infinite plate type tissue. Also, we simulate the vibration response of a finite-sized tissue using finite element method. The effects of the type of stress, the size and frequency of vibration sources, and medium boundaries on displacement patterns are discussed.

The Distribution Condition and Clothing Construction Factors of the Working Clothes - Reference to the Changwon National Industrial Complex -

  • Park, Gin-Ah;Park, Hye-Won
    • Journal of Fashion Business
    • /
    • v.12 no.3
    • /
    • pp.116-135
    • /
    • 2008
  • To investigate the actual distribution condition and clothing construction factors of the working clothes supplied to the Changwon national industrial complex, 5 major companies in machinery, automotive, industrial engineering, shipbuilding and rolling stock in the industrial complex located in Gyeongsangnam-Do were selected. The questionnaire designed for the research consisted of working clothes distribution policies in manufacturing industry and the actual conditions of the design facts, repair and maintenance of the working clothes, etc. The analysis of the clothing construction factors of the working clothes provided by 5 respondent companies were conducted in parallel. The results derived from the study were as follows: The basic types of working clothes were the blouson jacket and straight pants; safety equipments for manufacture were safety helmets, gloves, snickers, goggles, masks, ear caps, wristlets, leggings, apron, etc. The size-charts adopted by the participant companies were the small-medium-large and cm/inch measurement size systems. To solve wearer's dissatisfaction with the garment fit, certain clothing construction factors were used, e.g. strap bands and the elastic band on a waist band. The types of fabrics used for the working clothes were mainly polyester/cotton and polyester/rayon blended ones. Moreover, to provide with more air permeability to wearers, the warp knit material was used to construct the lining and the armpit or back bodice slits. Lock, two-thread chain, safety, overedge stitches were applied with flat, lap felled, French, superimposed, lapped, bound and edge finishing seams to construct the working clothes selected.

Crustal Structure of the Southern Part of Korea (한국(韓國) 남부지역(南部地域)의 지각구조(地殼構造))

  • Kim, Sung Kyun;Jung, Bu Hung
    • Economic and Environmental Geology
    • /
    • v.18 no.2
    • /
    • pp.151-157
    • /
    • 1985
  • Events detected by the KIER microearthquake network operated in the Southern Part of Korea for 265 days in 1982~1984 were reviewed, and some of them were identified to be a dynamite explosion from several construction sites. The purpose of the present work is to determine the crustal structure of the Southern Korea using the time-destance data obtained from such explosion seismic records. The time·distance data can be well explained by a crustal model composed of four horizontal layers of which thickness, p and s-wave velocity ($V_p$ and $V_s$) are characterized as follows. 1st layer (surface) ; 0~2km, $V_p=5.5km/sec$, $V_s=3.3km/sec$ 2nd layer (upper crust) ; 2~15km, $V_p=6.0km/sec$, $V_s=3.5km/sec$ 3rd layer (lower crust) ; 15~29km, $V_p=6.6km/sec$, $V_s=3.7km/sec$ 4th layer (upper mantle) ; 29km~ , $V_p=7.7km/sec$, $V_s=4.3km/sec$ The relatively shallow crust·mantle boundary and low $P_n$ velocity compared with the mean values for stable intraplate region are noteworthy. Supposedely, it is responsible for the high heat flow in the South-eastern Korea or an anomalous subterranean mantle. The mean $V_p/V_s$ ratio calculated from the relation between p-wave arrival and s-p arrival times appears to be 1.735 which is nearly equivalent to the elastic medium of ${\lambda}={\mu}$. However, the ratio tends to be slightly larger with the depth. The ratio is rather high compared with that of the adjacent Japanese Island, and the fact suggests that the underlying crust and upper mantle in this region are more ductile and hence the earthquake occurrences are apt to be interrupted. As an alternative curstal model, a seismic velocity structure in which velocities are successively increased with the depth is also proposed by the inversion of the time·distance data. With the velocity profile, it is possible to calculate a travel time table which is appropriate to determine the earthquake parameters for the local events.

  • PDF

Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.649-668
    • /
    • 2018
  • In this paper, we present a numerical model for fluid-structure interaction between structure built of porous media and acoustic fluid, which provides both pore pressure inside porous media and hydrodynamic pressures and hydrodynamic forces exerted on the upstream face of the structure in an unified manner and simplifies fluid-structure interaction problems. The first original feature of the proposed model concerns the structure built of saturated porous medium whose response is obtained with coupled discrete beam lattice model, which is based on Voronoi cell representation with cohesive links as linear elastic Timoshenko beam finite elements. The motion of the pore fluid is governed by Darcy's law, and the coupling between the solid phase and the pore fluid is introduced in the model through Biot's porous media theory. The pore pressure field is discretized with CST (Constant Strain Triangle) finite elements, which coincide with Delaunay triangles. By exploiting Hammer quadrature rule for numerical integration on CST elements, and duality property between Voronoi diagram and Delaunay triangulation, the numerical implementation of the coupling results with an additional pore pressure degree of freedom placed at each node of a Timoshenko beam finite element. The second original point of the model concerns the motion of the outside fluid which is modeled with mixed displacement/pressure based formulation. The chosen finite element representations of the structure response and the outside fluid motion ensures for the structure and fluid finite elements to be connected directly at the common nodes at the fluid-structure interface, because they share both the displacement and the pressure degrees of freedom. Numerical simulations presented in this paper show an excellent agreement between the numerically obtained results and the analytical solutions.

Size-dependent free vibration of coated functionally graded graphene reinforced nanoplates rested on viscoelastic medium

  • Ali Alnujaie;Ahmed A. Daikh;Mofareh H. Ghazwani;Amr E. Assie;Mohamed A Eltaher
    • Advances in nano research
    • /
    • v.17 no.2
    • /
    • pp.181-195
    • /
    • 2024
  • This study introduces a novel functionally graded material model, termed the "Coated Functionally Graded Graphene-Reinforced Composite (FG GRC)" model, for investigating the free vibration response of plates, highlighting its potential to advance the understanding and application of material property variations in structural engineering. Two types of coated FG GRC plates are examined: Hardcore and Softcore, and five distribution patterns are proposed, namely FG-A, FG-B, FG-C, FG-D, and FG-E. A modified displacement field is proposed based on the higher-order shear deformation theory, effectively reducing the number of variables from five to four while accurately accounting for shear deformation effects. To solve the equations of motion, an analytical solution based on the Galerkin approach was developed for FG GRC plates resting on a viscoelastic Winkler/Pasternak foundation, applicable to various boundary conditions. A comprehensive parametric analysis elucidates the impact of multiple factors on the fundamental frequencies. These factors encompass the types and distribution patterns of the coated FG GRC plates, gradient material distribution, porosities, nonlocal length scale parameter, gradient material scale parameter, nanoplate geometry, and variations in the elastic foundation. Our theoretical research aims to overcome the inherent challenges in modeling structures, providing a robust alternative to experimental analyses of the mechanical behavior of complex structures.