DOI QR코드

DOI QR Code

Size-dependent free vibration of coated functionally graded graphene reinforced nanoplates rested on viscoelastic medium

  • Ali Alnujaie (Department of Mechanical Engineering, College of Engineering and Computer Sciences, Jazan University) ;
  • Ahmed A. Daikh (Artificial Intelligence Laboratory for Mechanical and Civil Structures and Soil, University Centre of Naama) ;
  • Mofareh H. Ghazwani (Department of Mechanical Engineering, College of Engineering and Computer Sciences, Jazan University) ;
  • Amr E. Assie (Department of Mechanical Engineering, College of Engineering and Computer Sciences, Jazan University) ;
  • Mohamed A Eltaher (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University)
  • Received : 2023.04.06
  • Accepted : 2024.08.11
  • Published : 2024.08.25

Abstract

This study introduces a novel functionally graded material model, termed the "Coated Functionally Graded Graphene-Reinforced Composite (FG GRC)" model, for investigating the free vibration response of plates, highlighting its potential to advance the understanding and application of material property variations in structural engineering. Two types of coated FG GRC plates are examined: Hardcore and Softcore, and five distribution patterns are proposed, namely FG-A, FG-B, FG-C, FG-D, and FG-E. A modified displacement field is proposed based on the higher-order shear deformation theory, effectively reducing the number of variables from five to four while accurately accounting for shear deformation effects. To solve the equations of motion, an analytical solution based on the Galerkin approach was developed for FG GRC plates resting on a viscoelastic Winkler/Pasternak foundation, applicable to various boundary conditions. A comprehensive parametric analysis elucidates the impact of multiple factors on the fundamental frequencies. These factors encompass the types and distribution patterns of the coated FG GRC plates, gradient material distribution, porosities, nonlocal length scale parameter, gradient material scale parameter, nanoplate geometry, and variations in the elastic foundation. Our theoretical research aims to overcome the inherent challenges in modeling structures, providing a robust alternative to experimental analyses of the mechanical behavior of complex structures.

Keywords

Acknowledgement

The authors gratefully acknowledge the funding of the Deanship Graduate Studies and Scientic Research, Jazan University, Saudi Arabia, through project number RG24-M029.

References

  1. Abo-bakr, R.M., Abo-bakr, H.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Optimal weight for buckling of FG beam under variable axial load using pareto optimality", Compos. Struct., 258, 113193. https://doi.org/10.1016/j.compstruct.2020.113193
  2. Anirudh, B., Ganapathi, M., Anant, C. and Polit, O. (2019), "A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling", Compos. Struct., 222, 110899. https://doi.org/10.1016/j.compstruct.2019.110899
  3. Chen, D., Yang, J. and Kitipornchai, S. (2017), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Technol., 142, 235-245. http://doi.org/10.1016/j.compscitech.2017.02.008
  4. Chen, J., Cui, P. and Li, Q.S. (2020), "Free vibrations of functionally graded graphene-reinforced composite blades with varying cross-sections", Int. J. Struct. Stabil. Dyn., 20(14), 2043006. https://doi.org/10.1142/S0219455420430063
  5. Daikh, A.A. and Zenkour, A.M. (2020), "Bending of functionally graded sandwich nanoplates resting on Pasternak foundation under different boundary conditions", J. Appl. Comput. Mech., 6, 1245-1259. https://doi.org/10.22055/JACM.2020.33136.2166
  6. Daikh, A.A. and Megueni, A. (2018), "Thermal buckling analysis of functionally graded sandwich plates", J. Therm. Stress., 41(2), 139-159. https://doi.org/10.1080/01495739.2017.139364
  7. Daikh, A.A., Drai, A., Bensaid, I., Houari, M.S.A. and Tounsi, A. (2020b), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sand. Struct. Mater., 1099636220909790. https://doi.org/10.1177/1099636220909790
  8. Daikh, A.A., Houari, M.S.A. and Tounsi, A. (2019), "Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory", Eng. Res. Exp., 1(1), 015022. https://orcid.org/0000-0002-4666-2750
  9. Daikh, A.A., Drai, A., Houari M.S.A, and Eltaher, M.A. (2020a), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.64
  10. Dastjerdi, S., Malikan, M., Dimitri, R. and Tornabene, F. (2021), "Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment", Compos. Struct., 112925. https://doi.org/10.1016/j.compstruct.2020.112925
  11. Dong, Y. H., He, L. W., Wang, L., Li, Y. H. and Yang, J. (2018), "Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical plates: an analytical study", Aerosp. Sci. Technol., 82, 466-478. https://doi.org/10.1016/j.ast.2018.09.037
  12. Ebrahimi, F. and Barati, M.R. (2018), "Damping vibration analysis of graphene sheets on viscoelastic medium incorporating hygrothermal effects employing nonlocal strain gradient theory", Compos. Struct., 185, 241-253. https://doi.org/10.1016/j.compstruct.2017.10.021
  13. Ebrahimi, F. and Dabbagh, A. (2020), "Viscoelastic wave propagation analysis of axially motivated double-layered graphene sheets via nonlocal strain gradient theory", Wave. Random Complex Med., 30(1), 157-176. https://doi.org/10.1080/17455030.2018.1490505
  14. Eltaher, M.A. and Mohamed, N. (2020), "Nonlinear stability and vibration of imperfect CNTs by Doublet mechanics", Appl. Math. Comput., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311
  15. Eltaher, M.A., Attia, M.A. and Wagih, A. (2020b), "Predictive model for indentation of elasto-plastic functionally graded composites", Compos. Part B Eng., 108129. https://doi.org/10.1016/j.compositesb.2020.108129
  16. Eltaher, M.A., Mohamed, N. and Mohamed, S.A. (2020a), "Nonlinear buckling and free vibration of curved CNTs by doublet mechanics", Smart Struct. Syst., 26(2), 213-226. https://doi.org/10.12989/sss.2020.26.2.213
  17. Emam, S.A., Eltaher, M.A., Khater, M.E. and Abdalla, W.S. (2018), "Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load", Appl. Sci., 8(11), 2238. https://doi.org/10.3390/app8112238
  18. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  19. Fattahi, A.M., Sahmani, S. and Ahmed, N.A. (2019), "Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nano-beams under periodic hard excitations", Mech. Based Des. Struct., 1-30. https://doi.org/10.1080/15397734.2019.1624176
  20. Garcia-Macias, E., Rodriguez-Tembleque, L. and Saez, A. (2018), "Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates", Compos. Struct., 186, 123-138. https://doi.org/10.1016/j.compstruct.2017.11.076
  21. Guo, H., Cao, S., Yang, T. and Chen, Y. (2018), "Vibration of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method", Int. J. Mech. Sci., 142, 610-621. https://doi.org/10.1016/j.ijmecsci.2018.05.029
  22. Hamed M.A., R.M. Abu-bakr, Mohamed, S.A. and Eltaher, M.A., (2020b), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w
  23. Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020a), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075
  24. Huang, Y., Yang, Z., Liu, A. and Fu, J. (2018), "Nonlinear buckling analysis of functionally graded graphene reinforced composite shallow arches with elastic rotational constraints under uniform radial load", Materials, 11(6), 910. https://doi.org/10.3390/ma11060910
  25. Jafari, P. and Kiani, Y. (2021), "Free vibration of functionally graded graphene platelet reinforced plates: A quasi 3D shear and normal deformable plate model", Compos. Struct., 275, 114409. https://doi.org/10.1016/j.compstruct.2021.114409
  26. Jalaei, M.H. and Civalek, O . (2019), "A nonlocal strain gradient refined plate theory for dynamic instability of embedded graphene sheet including thermal effects", Compos. Struct., 220, 209-220. https://doi.org/10.1016/j.compstruct.2019.03.086
  27. Karami, B. and Shahsavari, D. (2020), "On the forced resonant vibration analysis of functionally graded polymer composite doubly-curved nanoplates reinforced with graphene-nanoplatelets", Comput. Meth. Appl. Mech. Eng., 359, 112767. https://doi.org/10.1016/j.cma.2019.112767
  28. Liu, D., Kitipornchai, S., Chen, W. and Yang, J. (2018), "Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical plate", Compos. Struct., 189, 560-569. https://doi.org/10.1016/j.compstruct.2018.01.106
  29. Liu, D., Li, Z., Kitipornchai, S. and Yang, J. (2019), « Three-dimensional free vibration and bending analyses of functionally graded graphene nanoplatelets-reinforced nanocomposite annular plates", Compos. Struct., 229, 111453. https://doi.org/10.1016/j.compstruct.2019.111453
  30. Mao, J.J. and Zhang, W. (2019), "Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces", Compos. Struct., 216, 392-405. https://doi.org/10.1016/j.compstruct.2019.02.095
  31. Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-00976-2
  32. Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. Part B Eng., 166, 310-327. https://doi.org/10.1016/j.compositesb.2018.11.074
  33. Rahimi, A., Alibeigloo, A. and Safarpour, M. (2020), "Three-dimensional static and free vibration analysis of graphene platelet-reinforced porous composite cylindrical plate", J. Vib. Control, 1077546320902340. https://doi.org/10.1177/1077546320902340
  34. Reddy, J.N. (1990), "A general non-linear third-order theory of plates with moderate thickness", Int. J. Non-Linear Mech., 25(6), 677-686. https://doi.org/10.1016/0020-7462(90)90006-U
  35. Sahmani, S., Aghdam, M. M. and Rabczuk, T. (2018), "Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory", Compos. Struct., 186, 68-78. https://doi.org/10.1016/j.compstruct.2017.11.082
  36. Shahgholian, D., Safarpour, M., Rahimi, A.R. and Alibeigloo, A. (2020), "Buckling analyses of functionally graded graphene-reinforced porous cylindrical plate using the Rayleigh-Ritz method", Acta Mechanica, 1-16. https://doi.org/10.1007/s00707-020-02616-8
  37. Shen, H.S., Xiang, Y. and Lin, F. (2017a), "Thermal buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations", Thin Wall. Struct., 118, 229-237. http://doi.org/10.1016/j.tws.2017.05.006
  38. Shen, H.S., Xiang, Y. and Lin, F. (2017b), "Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments", Compos. Struct., 170, 80-90. http://doi.org/10.1016/j.compstruct.2017.03.001
  39. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070
  40. Song, M., Yang, J. and Kitipornchai, S. (2018), "Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Part B Eng., 134, 106-113. https://doi.org/10.1016/j.compositesb.2017.09.043
  41. Tam, M., Yang, Z., Zhao, S. and Yang, J. (2019), « Vibration and buckling characteristics of functionally graded graphene nanoplatelets reinforced composite beams with open edge cracks", Materials, 12(9), 1412. https://doi.org/10.3390/ma12091412
  42. Tam, M., Yang, Z., Zhao, S., Zhang, H., Zhang, Y. and Yang, J. (2020), "Nonlinear bending of elastically restrained functionally graded graphene nanoplatelet reinforced beams with an open edge crack", Thin Wall. Struct., 156, 106972. https://doi.org/10.1016/j.tws.2020.106972
  43. Thai, C.H., Ferreira, A.J.M., Tran, T.D. and Phung-Van, P. (2019), "Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation", Compos. Struct., 220, 749-759. https://doi.org/10.1016/j.compstruct.2019.03.100
  44. Thai, C.H., Ferreira, A.J.M., Tran, T.D. and Phung-Van, P. (2020), "A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory", Compos. Struct., 234, 111695. https://doi.org/10.1016/j.compstruct.2019.111695
  45. Thai, H.T., Nguyen, T.K., Vo, T.P., Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech. A Solids, 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008
  46. Torabi, J., Ansari, R., Zabihi, A. and Hosseini, K. (2020), "Dynamic and pull-in instability analyses of functionally graded nanoplates via nonlocal strain gradient theory", Mech. Based Des. Struct., 1-21. https://doi.org/10.1080/15397734.2020.1721298
  47. Wang, Y., Feng, C., Yang, J., Zhou, D. and Liu, W. (2020), "Static response of functionally graded graphene platelet-reinforced composite plate with dielectric property", J. Intell. Mater. Syst. Struct., 31(19), 2211-2228. https://doi.org/10.1177/1045389X20943955
  48. Xiao, W.S. and Dai, P. (2020), "Static analysis of a circular nanotube made of functionally graded bi-semi-tubes using nonlocal strain gradient theory and a refined shear model", Eur. J. Mech. A Solids, 103979. https://doi.org/10.1016/j.euromechsol.2020.103979
  49. Yang, Z., Huang, Y., Liu, A., Fu, J. and Wu, D. (2019), "Nonlinear in-plane buckling of fixed shallow functionally graded graphene reinforced composite arches subjected to mechanical and thermal loading", Appl. Math. Modell., 70, 315-327. https://doi.org/10.1016/j.apm.2019.01.024
  50. Zhao, S., Zhao, Z., Yang, Z., Ke, L., Kitipornchai, S. and Yang, J. (2020), "Functionally graded graphene reinforced composite structures: A review", Eng. Struct., 210, 110339. https://doi.org/10.1016/j.engstruct.2020.110339