• Title/Summary/Keyword: elastic medium

Search Result 341, Processing Time 0.028 seconds

Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces

  • Kumar, B. Ravi
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.135-145
    • /
    • 2018
  • This work represents the study of the vibration response of the double walled carbon nanotubes (DWCNT) for various boundary conditions. The inner and outer carbon nanotubes are modeled as two individual Euler-Bernoulli's elastic beams interacting each other by Van der waals force. Differential transform method (DTM) is used as a numerical method to solve the governing differential equations and associated boundary conditions. The influence of Winkler elastic medium on vibration frequency is also examined and results are interpreted. MATLAB is used as a tool for solving the governing differential equations. The fundamental natural frequencies are validating with those available in literature and observed a good agreement between them.

Buckling Behavior of Elastically Restrained Orthotropic Plates (탄성구속된 직교이방성판의 좌굴거동)

  • 윤순종;정상균
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.17-25
    • /
    • 1999
  • In this paper, we present the analytical study results of buckling behavior of elastically restrained orthotropic plates. In the study the boundary conditions of the plate are simply supported at all four edges and elastically restrained by the elastic medium at opposite two longitudinal edges. The energy method is employed in the solution of the problems in which method the buckling coefficient is calculated from the condition that the work-done by the external forces during buckling is equal to the stored elastic strain energy. The results are presented in the graphical from. The equations derived for the orthotropic plate in this study are compared with existing isotropic ones and identical results were observed.

  • PDF

Vibration characteristics of advanced nanoplates in humid-thermal environment incorporating surface elasticity effects via differential quadrature method

  • Ebrahimi, Farzad;Heidari, Ebrahim
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.131-157
    • /
    • 2018
  • In this study, Eringen nonlocal elasticity theory in conjunction with surface elasticity theory is employed to study nonlinear free vibration behavior of FG nano-plate lying on elastic foundation, on the base of Reddy's plate theory. The material distribution is assumed as a power-law function and effective material properties are modeled using Mori-Tanaka homogenization scheme. Hamilton's principle is implemented to derive the governing equations which solved using DQ method. Finally, the effects of different factors on natural frequencies of the nano-plate under hygrothermal situation and various boundary conditions are studied.

Response of temperature dependence of an elastic modulus in microstretch generalized thermoelasticity

  • Kumar, Rajneesh;Gupta, Rajani Rani
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.577-592
    • /
    • 2008
  • Laplace-Fourier transform techniques are used to investigate the interaction caused by mechanical, thermal and microstress sources in a generalized thermomicrostretch elastic medium with temperature-dependent mechanical properties. The modulus of elasticity is taken as a linear function of reference temperature. The integral transforms are inverted using a numerical technique to obtain the normal stress, tangential stress, tangential couple stress, microstress and temperature distribution. Effect of temperature dependent modulus of elasticity and thermal relaxation times have been depicted graphically on the resulting quantities. Comparisons are made with the results predicted by the theories of generalized thermoelasticity. Some particular cases are also deduced from the present investigation.

Rayleigh wave in an anisotropic heterogeneous crustal layer lying over a gravitational sandy substratum

  • Kakar, Rajneesh;Kakar, Shikha
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.137-154
    • /
    • 2016
  • The purpose of this paper is to study the propagation of Rayleigh waves in an anisotropic heterogeneous crustal layer over a gravitational semi-infinite sandy substratum. It is assumed that the heterogeneity in the crustal layer arises due to exponential variation in elastic coefficients and density whereas the semi-infinite sandy substratum has homogeneous sandiness parameters. The coupled effects of heterogeneity, anisotropy, sandiness parameters and gravity on Rayleigh waves are discussed analytically as well as numerically. The dispersion relation is obtained in determinant form. The proposed model is solved to obtain the different dispersion relations for the Rayleigh wave in the elastic medium of different properties. The results presented in this study may be attractive and useful for mathematicians, seismologists and geologists.

A Study on the Buckling Behavior of the Web of Box Girders (상자형 복부판의 좌굴 거동에 관한 연구)

  • 이상우;권영봉
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.27-34
    • /
    • 1995
  • Elastic and in-elastic buckling stress analyses are executed by the semi-analytical finite strip method to study the effect of the longitudinal stiffener on the web of box girders. The simple analysis procedure is based on the assumption that the vertical stiffeners has the rigidity enough to force nil deflection line on the web panel so that the boundary condition may be regarded as a hinge. The provisions on the longitudinal stiffeners in plate girders of the Korean Standard Highway Bridge Specifications(1992) are investigated through comparison with the results obtained for various web stiffener size of box girders of the medium span length bridges.

  • PDF

p-Version Static Infinite Element for Representing Various Displacement Decay Characteristics (다양한 변위감쇠특성을 고려할 수 있는 p-버전 정적 무한요소)

  • 고광훈;이승래
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.101-110
    • /
    • 1997
  • This paper presents a two dimensional p-version static infinite element for analyzing $1/r^n$ displacement decay type problems in unbounded media. The proposed element is developed by using shape functions based on approximate expressions of an analytical solution. Numerical results are presented for an opening in a homogeneous elastic infinite medium and a rigid footing rested on a homogeneous elastic half-space. The numerical results show the effectiveness of the proposed infinite element.

  • PDF

Buckling analysis of concrete plates reinforced by piezoelectric nanoparticles

  • Taherifar, Reza;Mahmoudi, Maryam;Nasr Esfahani, Mohammad Hossein;Khuzani, Neda Ashrafi;Esfahani, Shabnam Nasr;Chinaei, Farhad
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.295-301
    • /
    • 2019
  • In this paper, buckling analyses of composite concrete plate reinforced by piezoelectric nanoparticles is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nano composite concrete plate. The nano composite concrete plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing nonlinear strains-displacements, stress-strain, the energy equations of concrete plate are obtained and using Hamilton's principal, the governing equations are derived. The governing equations are solved based on Navier method. The effect of piezoelectric nanoparticles volume percent, geometrical parameters of concrete plate and elastic foundation on the buckling load are investigated. Results showed that with increasing Piezoelectric nanoparticles volume percent, the buckling load increases.

Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories

  • Javani, Rasool;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.419-426
    • /
    • 2019
  • In this paper, buckling analyses of composite plate reinforced by Graphen platelate (GPL) is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nano composite plate. The nano composite plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing nonlinear strains-displacements, stress-strain, the energy equations of plate are obtained and using Hamilton's principal, the governing equations are derived. The governing equations are solved based on Navier method. The effect of GPL volume percent, geometrical parameters of plate and elastic foundation on the buckling load are investigated. Results showed that with increasing GPLs volume percent, the buckling load increases.

Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent

  • Othman, Mohamed I.A.;Zidan, Magda E.M.;Mohamed, Ibrahim E.A.
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.355-363
    • /
    • 2021
  • The present paper attempts to investigate the propagation of plane waves in an isotropic elastic medium under the effect of initial stress and temperature-dependent properties. The modulus of elasticity is taken as a linear function of the reference temperature. The formulation is applied under the thermoelasticity theory with dual-phase-lag; the normal mode analysis is used to obtain the expressions for the displacement components, the temperature, the stress, and the strain components. Numerical results for the field quantities are given in the physical domain and illustrated graphically. Comparisons are made with the results predicted by different theories (Lord-Shulman theory, the classical coupled theory of thermoelasticity and the dual-phase-lag model) in the absence and presence of the initial stress as well as the case where the modulus of elasticity is independent of temperature.