• Title/Summary/Keyword: elastic media

Search Result 142, Processing Time 0.027 seconds

Non-classical plate model for single-layered graphene sheet for axial buckling

  • Safaei, Babak;Khoda, Farzad Hamed;Fattahi, A.M.
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.265-275
    • /
    • 2019
  • In this work, the effect of size on the axial buckling behavior of single-layered graphene sheets embedded in elastic media is studied. We incorporate Eringen's nonlocal elasticity equations into three plate theories of first order shear deformation theory, higher order shear deformation theory, and classical plate theory. The surrounding elastic media are simulated using Pasternak and Winkler foundation models and their differences are evaluated. The results obtained from different nonlocal plate theories include the values of Winkler and Pasternak modulus parameters, mode numbers, nonlocal parameter, and side lengths of square SLGSs. We show here that axial buckling behavior strongly depends on modulus and nonlocal parameters, which have different values for different mode numbers and side lengths. In addition, we show that in different nonlocal plate theories, nonlocality is more influential in first order shear deformation theory, especially in certain range of nonlocal parameters.

A Study on Absorbing Boundaries for Wave Propagation in Semi-Infinite Elastic Media (반무한 영역에서의 탄성파 진행문제를 위한 흡수경계에 관한 연구)

  • 이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.451-457
    • /
    • 2000
  • In many dynamic problems such as foundation vibrations ultrasonic nondestructive evaluation and blasting analysts are confronted with the problem of wave propagation in an infinite or semi-infinite media. In order to simulate this situation by a finite analytical model provisions must be made to absorb the stress waves arriving at the boundary. Absorbing boundaries are mathematical artifacts used to prevent wave reflections at the boundaries of discrete models for infinite media under dynamic loads. An analytical study is carried out to examine the effectiveness of Lysmer-Kuhlemeyer model one of the most widely used absorbing boundaries. Validity of the absorbing boundary conditions suggested by Lymer-Kuhlemeyer is examined by adopting the solution of Ewing et al. to the problem of plane waves from a harmonic normal force on the surface of an elastic half-space. The Ewing's problem is than numerically simulated using the finite element method on a semi-circular mesh with and without absorbing boundaries which are represented by viscous dashpots. The absorption ratios are calculated by comparing the displacements at the absorbing boundaries to those at the free field without absorbing boudaries.

  • PDF

Acceleration of Anisotropic Elastic Reverse-time Migration with GPUs (GPU를 이용한 이방성 탄성 거꿀 참반사 보정의 계산가속)

  • Choi, Hyungwook;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.74-84
    • /
    • 2015
  • To yield physically meaningful images through elastic reverse-time migration, the wavefield separation which extracts P- and S-waves from reconstructed vector wavefields by using elastic wave equation is prerequisite. For expanding the application of the elastic reverse-time migration to anisotropic media, not only the anisotropic modelling algorithm but also the anisotropic wavefield separation is essential. The anisotropic wavefield separation which uses pseudo-derivative filters determined according to vertical velocities and anisotropic parameters of elastic media differs from the Helmholtz decomposition which is conventionally used for the isotropic wavefield separation. Since applying these pseudo-derivative filter consumes high computational costs, we have developed the efficient anisotropic wavefield separation algorithm which has capability of parallel computing by using GPUs (Graphic Processing Units). In addition, the highly efficient anisotropic elastic reverse-time migration algorithm using MPI (Message-Passing Interface) and incorporating the developed anisotropic wavefield separation algorithm with GPUs has been developed. To verify the efficiency and the validity of the developed anisotropic elastic reverse-time migration algorithm, a VTI elastic model based on Marmousi-II was built. A synthetic multicomponent seismic data set was created using this VTI elastic model. The computational speed of migration was dramatically enhanced by using GPUs and MPI and the accuracy of image was also improved because of the adoption of the anisotropic wavefield separation.

Mechanical analysis of non-uniform beams resting on nonlinear elastic foundation by the differential quadrature method

  • Hsu, Ming-Hung
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.279-292
    • /
    • 2006
  • A new approach using the differential quadrature method (DQM) is derived for analysis of non-uniform beams resting on nonlinear media in this study. The influence of velocity dependent viscous damping and strain rate dependent viscous damping is investigated. The results solved using the DQM have excellent agreement with the results solved using the FEM. Numerical results indicated that the DQM is valid and efficient for non-uniform beams resting on non-linear media.

Elastic Resistance Exercise for the Elderly on the Magnitude of Frequency and Variability of Ground Reaction Force Signals during Walking (고령자 보행 시 탄성저항운동이 지면반력 신호의 주파수 크기와 variability에 미치는 영향)

  • Seo, Se-Mi;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.49-57
    • /
    • 2008
  • The purpose of this study was to determine the effects of 12-week elastic resistance exercise for the elderly on the magnitude of frequency and variability of ground reaction force signals. To this aim, total 12 elderly women aged in their 70 were participated in this study and asked to do a 12-week elastic resistance exercise program. FFT(fast Fourier Transform) was used to analyze the frequency domain analysis of the ground reaction forces's signals and an accumulative PSD (power spectrum density) normalized by support phase of walking was calculated to reconstruct the certain signals. To estimate the gait stability between the before and after exercise, values of variability were determined in a coefficient of variance. The magnitude of frequency and variability analysis for media-lateral signal revealed significantly less after exercise (p<.05). In contrast, variability of this signal's frequency that have used to evaluate the local stability during walking exhibited significantly greater after exercise(p<.05). In summary, magnitude frequency and variability of media-lateral ground reaction force's signal were significantly changed after a 12-week elastic resistance exercise.

Stress wave propagation in 1-D and 2-D media using Smooth Particle Hydrodynamics method

  • Liu, Z.S.;Swaddiwudhipong, S.;Koh, C.G.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.455-472
    • /
    • 2002
  • The paper involves the study on the elastic and elasto-plastic stress wave propagation in the 1-D and 2-D solid media. The Smooth Particle Hydrodynamics equations governing the elastic and elasto-plastic large deformation dynamic response of solid structures are presented. The proposed additional stress points are introduced in the formulation to mitigate the tensile instability inherent in the SPH approach. Both incremental rate approach and leap-frog algorithm for time integration are introduced and the new solution algorithm is developed and implemented. Two examples on stress wave propagation in aluminium bar and 2-D elasto-plastic steel plate are included. Results from the proposed SPH approach are compared with available analytical values and finite element solutions. The comparison illustrates that the stress wave propagation problems can be effectively solved by the proposed SPH method. The study shows that the SPH simulation is a reliable and robust tool and can be used with confidence to treat transient dynamics such as linear and non-linear transient stress wave propagation problems.

A log visualization method for network security monitoring (네트워크 보안 관제를 위한 로그 시각화 방법)

  • Joe, Woo-Jin;Shin, Hyo-Jeong;Kim, Hyong-Shik
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.70-78
    • /
    • 2018
  • Current trends in information system have led many companies to adopt security solutions. However, even with a large budget, they cannot function properly without proper security monitoring that manages them. Security monitoring necessitates a quick response in the event of a problem, and it is needed to design appropriate visualization dashboards for monitoring purposes so that necessary information can be delivered quickly. This paper shows how to visualize a security log using the open source program Elastic Stack and demonstrates that the proposed method is suitable for network security monitoring by implementing it as a appropriate dashboard for monitoring purposes. We confirmed that the dashboard was effectively exploited for the analysis of abnormal traffic growth and attack paths.

Axisymmetric analysis of a functionally graded layer resting on elastic substrate

  • Turan, Muhittin;Adiyaman, Gokhan;Kahya, Volkan;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.423-442
    • /
    • 2016
  • This study considers a functionally graded (FG) elastic layer resting on homogeneous elastic substrate under axisymmetric static loading. The shear modulus of the FG layer is assumed to vary in an exponential form through the thickness. In solution, the FG layer is approximated into a multilayered medium consisting of thin homogeneous sublayers. Stiffness matrices for a typical homogeneous isotropic elastic layer and a half-space are first obtained by solving the axisymmetric elasticity equations with the aid of Hankel's transform. Global stiffness matrix is, then, assembled by considering the continuity conditions at the interfaces. Numerical results for the displacements and the stresses are obtained and compared with those of the classical elasticity and the finite element solutions. According to the results of the study, the approach employed here is accurate and efficient for elasto-static problems of FGMs.

Analytical solutions to magneto-electro-elastic beams

  • Jiang, Aimin;Ding, Haojiang
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.195-209
    • /
    • 2004
  • By means of the two-dimensional basic equations of transversely isotropic magneto-electro-elastic media and the strict differential operator theorem, the general solution in the case of distinct eigenvalues is derived, in which all mechanical, electric and magnetic quantities are expressed in four harmonic displacement functions. Based on this general solution in the case of distinct eigenvalues, a series of problems is solved by the trial-and-error method, including magneto-electro-elastic rectangular beam under uniform tension, electric displacement and magnetic induction, pure shearing and pure bending, cantilever beam with point force, point charge or point current at free end, and cantilever beam subjected to uniformly distributed loads. Analytical solutions to various problems are obtained.

Propagation Characteristics of High-frequency Waves in an Elastic Waveguide (탄성 도파봉에서 고주파수 파동의 전파 특성)

  • Lee, Jung-Gu;Kim, Jin-Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.816-821
    • /
    • 2010
  • The paper presents a theoretical analysis on the propagation characteristics of the high-frequency wave in an elastic waveguide whose diameter is less than or similar to the wavelength. The theoretical results were verified by comparing them with the numerical results obtained by the boundary-element method. The ratio of the waveguide diameter to the wavelength affects the number of the existing wavenumber, and thus it affects the propagation characteristics. In the media with attenuation, the trend is similar to that in the media without attenuation except the decreasing amplitude.