• Title/Summary/Keyword: elastic materials

Search Result 1,859, Processing Time 0.039 seconds

On the elastic parameters of the strained media

  • Guliyev, Hatam H.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.53-67
    • /
    • 2018
  • The changes of parameters of pressure and velocity of propagation of elastic pressure and shear waves in uniformly deformed solid compressible media are studied within the nonclassically linearized approach (NLA) of nonlinear elastodynamics to create a new theoretical basis of the geomechanical interpretation of various groups of geophysical observational and experimental data. The cases of small and large deformations are considered while their describing by various elastic potentials, i.e., problems considering the physical and geometric nonlinearity. Convenient analytical formulae are obtained to calculate the indicated parameters in the deformed isotropic media within the nonclassical linear and nonlinear solution in the NLA. Specific numerical experiments are conducted in case of overall compression of various materials. It is shown that the method (generally accepted in the studies of mechanics of standard constructional materials) of additional linearization (relative to the pressure parameter) in the basic correlations of the NLA introduces substantial quantitative and qualitative errors into the results at significant preliminary deformations. The influences of the physical and geometric nonlinearity on the studied characteristics of the medium are large in various materials and differ qualitatively. The contribution of nonlinear components to the values of the considered parameters prevails over linear components at large deformations. When certain critical values of compression deformations in the medium are achieved, elastic waves with actual velocity cannot propagate in it. The values of the critical deformations for pressure and shear waves differ within different elastic potentials and variants of the theory of initial deformations.

Estimation of rock tensile and compressive moduli with Brazilian disc test

  • Wei, Jiong;Niu, Leilei;Song, Jae-Joon;Xie, Linmao
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.353-360
    • /
    • 2019
  • The elastic modulus is an important parameter to characterize the property of rock. It is common knowledge that the strengths of rocks are significantly different under tension and compression. However, little attention has been paid to the bi-modularity of rock. To validate whether the rock elastic moduli in tension and compression are the same, Brazilian disc, direct tension and compression tests were conducted. A horizontal laser displacement meter and a pair of vertical and transverse strain gauges were applied. Four types of materials were tested, including three types of rock materials and one type of steel material. A comprehensive comparison of the elastic moduli based on different experimental results was presented, and a tension-compression anisotropy model was proposed to explain the experimental results. The results from this study indicate that the rock elastic modulus is different under tension and compression. The ratio of the rock elastic moduli under compression and tension ranges from 2 to 4. The rock tensile moduli from the strain data and displacement data are approximate. The elastic moduli from the Brazilian disc test are consistent with those from the uniaxial tension and compression tests. The Brazilian disc test is a convenient method for estimating the tensile and compressive moduli of rock materials.

A PRECISION COLD FORGING OF DIFFERENTIAL SIDE GEAR FOR AUTOMOBILE

  • Noh T.D.;Jung S.H.;Lee Y.S.;Kwon Y.N.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.63-66
    • /
    • 2003
  • Forged gears have the obvious advantages with the greater utilisation of raw material and high productivity over the machined gears. The forged bevel gear has been used in differential gear for automotive with a high reliance. On the other hand, the studies have been continued to improve the accuracy and expand the applying areas. In this paper, a whole manufacturing process for forged gear from die design and cold forging to heat-treatment was introduced. The stress and elastic deformation for forging die have been analysed by the 3D-FEM-package. The real elastic deformation of die was measured by the strain-gages. The elastic deformation of die was reached to 1mm, in terms of the present study. The analysed quantitative dimension of die was taken into consideration into the CAD/CAM data for forging die.

  • PDF

Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications (웨어러블 패키징용 Polydimethylsiloxane (PDMS) 신축성 기판의 강성도 변화거동)

  • Choi, Jung-Yeol;Park, Dae-Woong;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.125-131
    • /
    • 2014
  • In order to develop stretchable substrates for wearable packaging applications, the variation behavior of elastic modulus was evaluated for transparent PDMS Sylgard 184 and black PDMS Sylgard 170 as a function of the base/curing agent mixing ratio. Both for Sylgard 184 and Sylgard 170, the true elastic modulus evaluated on a true stress-true strain curve was higher more than two times compared to the engineering elastic modulus obtained from an engineering stres-sengineering strain curve, and their difference became larger with increasing the stiffness of the PDMS. Sylgard 184 exhibited a maximum engineering elastic modulus of 1.74 MPa and a maximum true elastic modulus of 3.57 MPa at the base/curing agent mixing ratio of 10. A maximum engineering elastic modulus of 1.51 MPa and a maximum true elastic modulus of 3.64 MPa were obtained for Sylgard 170 at the base/curing agent mixing ratio of 2.

Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation

  • Daouadji, Tahar Hassaine;Adim, Belkacem;Benferhat, Rabia
    • Advances in materials Research
    • /
    • v.5 no.1
    • /
    • pp.35-53
    • /
    • 2016
  • Flexural bending analysis of perfect and imperfect functionally graded materials plates under hygro-thermo-mechanical loading are investigated in this present paper. Due to technical problems during FGM fabrication, porosities and micro-voids can be created inside FGM samples which may lead to the reduction in density and strength of materials. In this investigation, the FGM plates are assumed to have even and uneven distributions of porosities over the plate cross-section. The modified rule of mixture is used to approximate material properties of the FGM plates including the porosity volume fraction. In order the elastic coefficients, thermal coefficient and moisture expansion coefficient of the plate are assumed to be graded in the thickness direction. The elastic foundation is modeled as two-parameter Pasternak foundation. The equilibrium equations are given and a number of examples are solved to illustrate bending response of Metal-Ceramic plates subjected to hygro-thermo-mechanical effects and resting on elastic foundations. The influences played by many parameters are investigated.

Elastic Model of Twisted Yarn Composites (Twisted Yarn 복합재료의 탄성계수 예측모델)

  • 변준형;이상관;엄문광
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.57-60
    • /
    • 2002
  • The stiffness model has been proposed to predict elastic constants of twisted yarn composites. The model is based upon the unit cell structure, the coordinate transformation, and the volume averaging of compliance constants for constituent materials. For the correlation of analytic results with experiments, composite samples of various yarn twist angle were tested. The samples were fabricated by the RTM process using glass yarns and epoxy resin. The correlations of elastic constants showed relatively good agreements. The model provides the predictions of the three-dimensional engineering constants, which are valuable input data for the analytic characterization of textile composites made of twisted yarn.

  • PDF

Stability Evaluation & Determination of Critical Buckling Load for Non-Linear Elastic Composite Column (비선형 탄성 복합재료 기둥의 임계 좌굴하중 계산 및 안정성 평가)

  • 주기호;정재호;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.215-219
    • /
    • 2003
  • Buckling and post-buckling Analysis of Ludwick type and modified Ludwick type elastic materials was carried out. Because the constitutive equation, or stress-strain relationship is different from that of linear elastic one, a new governing equation was derived and solved by $4^{th}$ order Runge-Kutta method. Considered as a special case of combined loading, the buckling under both point and distributed load was selected and researched. The final solution takes distinguished behavior whether the constitutive relation is chosen to be modified or non-modified Ludwick type as well as linear or non-linear. We also derived strain energy function for non-linear elastic constitutive relationship. By doing so, we calculated the criterion function which estimates the stability of the equilibrium solutions and determines critical buckling load for non-linear cases. We applied this theory to the constitutive relationship of fabric, which also is the non-linear equation between the applied moment and curvature. This results has both technical and mathematical significance.

  • PDF

On propagation of elastic waves in an embedded sigmoid functionally graded curved beam

  • Zhou, Linyun;Moradi, Zohre;Al-Tamimi, Haneen M.;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.17-31
    • /
    • 2022
  • This investigation studies the characteristics of wave dispersion in sigmoid functionally graded (SFG) curved beams lying on an elastic substrate for the first time. Homogenization process was performed with the help of sigmoid function and two power laws. Moreover, various materials such as Zirconia, Alumina, Monel and Nickel steel were explored as curved beams materials. In addition, curved beams were rested on an elastic substrate which was modelled based on Winkler-Pasternak foundation. The SFG curved beams' governing equations were derived according to Euler-Bernoulli curved beam theory which is known as classic beam theory and Hamilton's principle. The resulted governing equations were solved via an analytical method. In order to validate the utilized method, the obtained outcomes were compared with other researches. Finally, the influences of various parameters, including wave number, opening angle, gradient index, Winkler coefficient and Pasternak coefficient were evaluated and indicated in the form of diagrams.

A STUDY ON PHYSICAL PROPERTIES OF INTEROCCLUSAL RECORDING MATERIALS (악간 기록재료의 물리적 특성에 관한 연구)

  • Kang, Jeong-Kil;Yu, Hyoung-Woo;Ahn, Seung-Geun;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.4
    • /
    • pp.657-664
    • /
    • 1996
  • The purpose of this study was to compare the dimensional stability, compression resistance, elastic recovery and surface hardness of elastomeric interocclusal recording materials. Five commonly used elastomeric interocclusal recording materials(Ramitec, Regisil, Blue-Mousse, Stat-Br, Coltoflax) were selected for this study. According to ADA specification No. 19, two types of specimen were fabricated. Cylinder type specimens were used to test compression resistance and elastic recovery and plate type specimens were used to evaluate dimensional stability and surface hardness. Paired t-test was applied to detect significance among the occlusal registration materials. The obtained results were as follows: 1. There were statistical difference in dimensional stability between the elastic interocclusal recording materials. The dimensional stability of silicone was higher than that of polyether tested(p<0.05). 2. Coltoflax was significantly less resistance to compression than the other elastic interocclusal recording materials(p<0.001). 3. The elastic recovery capacity of Blu-Mousse and Stat-Br is better than that of Coltoflax (p<0.01). 4. The surface hardness of Coltoflax was lower than that of Blu-Mousse and Stat-Br(p<0.05). 5. The percentage dimensional change of alll materials was acceptable according to the limid of 0.5% suggeted by ADA specificatin No. 19.

  • PDF

A Study on the Elastic Wave Velocity of Magnetostrictive Materials (자왜 재료의 탄성파 속도에 관한 연구)

  • 강국진;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.54-61
    • /
    • 2001
  • Magnetostrictive materials have nonlinear elasto-magnetic properties. However the constitutive equations to describe the nonlinear properties are not available, yet. In this study we develope the equation in magnetostrictive materials by use of piezomagnetic constitutive equation which is quasi-linearized. With the wave equation, we determine the propagation velocity inside the magnetostrictive materials when a plane wave propagates along a given magnetic field. Validity of the calculated velocity is verified through comparison with experimental velocity measurement results for the most representative magnetostrictive materials. Terfenol-D.

  • PDF