• Title/Summary/Keyword: elastic materials

Search Result 1,871, Processing Time 0.026 seconds

Effect of Elevated Temperature on Mechanical Properties of Limestone, Quartzite and Granite Concrete

  • Tufail, Muhammad;Shahzada, Khan;Gencturk, Bora;Wei, Jianqiang
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • Although concrete is a noncombustible material, high temperatures such as those experienced during a fire have a negative effect on the mechanical properties. This paper studies the effect of elevated temperatures on the mechanical properties of limestone, quartzite and granite concrete. Samples from three different concrete mixes with limestone, quartzite and granite coarse aggregates were prepared. The test samples were subjected to temperatures ranging from 25 to $650^{\circ}C$ for a duration of 2 h. Mechanical properties of concrete including the compressive and tensile strength, modulus of elasticity, and ultimate strain in compression were obtained. Effects of temperature on resistance to degradation, thermal expansion and phase compositions of the aggregates were investigated. The results indicated that the mechanical properties of concrete are largely affected from elevated temperatures and the type of coarse aggregate used. The compressive and split tensile strength, and modulus of elasticity decreased with increasing temperature, while the ultimate strain in compression increased. Concrete made of granite coarse aggregate showed higher mechanical properties at all temperatures, followed by quartzite and limestone concretes. In addition to decomposition of cement paste, the imparity in thermal expansion behavior between cement paste and aggregates, and degradation and phase decomposition (and/or transition) of aggregates under high temperature were considered as main factors impacting the mechanical properties of concrete. The novelty of this research stems from the fact that three different aggregate types are comparatively evaluated, mechanisms are systemically analyzed, and empirical relationships are established to predict the residual compressive and tensile strength, elastic modulus, and ultimate compressive strain for concretes subjected to high temperatures.

Influence of Carbonation and Freezing-thawing on the Chloride Diffusion in Concrete (탄산화 및 동결융해 현상이 콘크리트 중의 염소이온 확산에 미치는 영향 연구)

  • Kim, Dong-Baek;Kwon, Ki-Jun;Jung, Sang-Hwa;Bok, Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.57-64
    • /
    • 2007
  • Recently, the corrosion of concrete structures has received great attention related with the deterioration of sea-side structures, such as new airport, bridges, and nuclear power plants. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the influences of carbonation and freezing-thawing action to chloride attack in concrete structures. The test results indicate that the chloride penetration is more pronounced than the case of single chloride attack when the carbonation process is combined with the chloride attack. It is supposed that the chloride ion concentration of carbonation region is higher than the sound region because of the separation of fixed salts. Though the use of fly ash pronounces the chloride ion concentration in surface, amounts of chloride ion penetration into deep region decreases with the use of fly ash. The small reduction of relative dynamic elastic modulus induced from freezing-thawing increases the chloride ion penetration depths much. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of both chlorides and carbonation or freezing-thawing but the future studies for combined environment will assure the precise assessment.

Exaggeration Shown in Contemporary Knit Fashion (현대 니트 패션에 나타난 과장성)

  • Yoo, Jinhee;Lee, Younhee
    • Journal of the Korean Society of Costume
    • /
    • v.64 no.8
    • /
    • pp.67-82
    • /
    • 2014
  • This research aims to explicate how we reveal our identity and emphasize beauty in our passion for beauty. It also attempts to find out our sense of beauty in exaggeration of visual expressions. The purpose is to represent how the contemporary knit fashion is various and exaggerated in our modern fashion world, and also to give the direction of new knitwear designs through the visual analysis of exaggerated knit fashion. Literature research was done by studying reference books and magazines, leading papers and based on a dissertation thesis. This study collected 787 designer's works published in the world's big Four collections from the 2000 S/S to 2011 S/S, in 23 seasons during 12 years. In answer to 9 experts about the criteria of classification, 520 works were chosen and analyzed according to the standard of exaggerated knitwear. The result of the study is the followings: The type of exaggeration shown in contemporary knit fashion was classified in three categories; Enlarge exaggeration, reduce exaggeration and transform exaggeration. As a sub-category, enlarge exaggeration was classified into three categories; Volume expansion and the expansion by the material, gauge and larger composition application expansion. Reduce exaggeration appeared as mini-reduction, skinny-reduction and transform exaggeration was respectively classified into deformation of the shape and patterns. The characteristics of exaggeration shown in contemporary knit fashion appeared as the new formative sense. In terms of fuller sense and surface, using various materials, gauge, changes in the composition represented challenges for textiles. The exaggerated contemporary knitwear expressed sex appeal using tight-fitting effect. Contemporary knit fashion simplified the design by taking advantage of the strong elastic attributes. It showed the beauty of women, expressed variability and limitless knit characteristics beyond the conventional thinking. In addition, it has been well represented as a form of freedom, amusement and diversity.

Behavior of Orthotropic Composite Plate Due to Random Poisson's Ratio (직교이방성 복합적층구조의 거동: 포아송비의 임의성에 의한 영향)

  • Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.627-637
    • /
    • 2009
  • Composite materials have been employed in the various engineering applications due to high mechanical performances including high strength-weight ratio and high degree of free formability. Due to complex manufacturing process, however, it can have intrinsic randomness in the material constants which affect the deterministic behavior of the composite structures. In this study, we suggest a formulation for stochastic finite element analysis considering the spatial randomness of Poisson's ratio. Considering the reciprocal relation between elastic moduli and Poisson's ratios in the two mutually orthogonal axes, one of two values of Poisson's ratio can be expressed in terms of the other. Using this, the relation between stress resultants and strains is derived in the ascending order of power of the stochastic field function, which can be directly used in the formulation to obtain the coefficient of variation of responses. The adequacy of the proposed scheme is demonstrated by comparison with the results of Monte Carlo analysis.

KSR- III 킥모터용 노즐의 열탄성 해석 및 시험

  • Cho, In-Hyun;Oh, Seung-Hyub;Yu, Jae-Suk;Rho, Tae-Ho
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.153-162
    • /
    • 2002
  • This paper predicted the engineering constants of spatially reinforced carbon/ carbon composites and analyzed the mechanical behaviour of the kick motor nozzle. Those equivalent engineering constants are used to analyze the mechanical behaviour of the kick motor nozzle. Because the distribution of equivalent engineering constants is varying as change its structure, we made a program to predict engineering constants of spatially reinforced composites. The kick motor nozzle consists of graphite or spatially reinforced carbon/ carbon composites for the nozzle throat, carbon/ phenol for the nozzle entrance and the expansion part, and steel for the outer surface of the expansion part. The 4-D carbon/ carbon composite shows the smallest deformed shape of the nozzle throat, which has a favorable effect on the rocket thrust, and the most uniform deformation of all nozzle throat materials. In addition to analysis, ground firing tests of 4D C/ C nozzle throat and graphite nozzle throat were performed.

  • PDF

Finite Element Analysis for Acoustic Characteristics of Piezoelectric Underwater Acoustic Sensors (압전 수중음향센서 음향특성의 유한요소해석)

  • 김재환;손선봉;조철희;조치영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.68-76
    • /
    • 2001
  • Sonar is the system that detects objects and finds their location in water by using the echo ranging technique. In order to have excellent performance in variable environment, acoustic characteristics of this system must be analyzed accurately. In this paper, based on the finite element analysis, modeling and analysis of acoustic characteristics of underwater acoustic sensors are preformed. Couplings between piezoelectric and elastic materials, and fluid and structure systems associated with the modeling of piezoelectric underwater acoustic sensors are formulated. In the finite element modeling of unbounded acoustic fluid, IWEE (Infinite Eave Envelop Element) is adopted to take into account the infinite domain. When an incidence wave excites the surface of Tonpilz underwater acoustic sensor, the scattered wave on the sensor is founded by satisfying the radiation condition at the artificial boundary approximately. Based on this scattering analysis, the electrical response of the underwater acoustic sensor under incidence, so called RVS (Receiving Voltage Signal) is founded accurately. This will devote to design Sonar systems accurately.

  • PDF

Mechanical Characteristics of Recycled Concrete as a Pavement Material for Low-Volume Road (소 도로포장 재료로서 재생콘크리트의 역학적 특성)

  • 김광우;류능환;박용철
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.171-178
    • /
    • 1996
  • This study evaluated mechanical characteristics and performance of recycled concrete as a pavement material for use in low volume road. The recycled concrete was prepared by replacing a half of coarse aggregate with recycled coarse aggregate. Natural sand from a source was used as fine aggregate together with admixtures, such as plasticizer and fly ash (0.8% and 5% by wt. of total binder, respectively). From experimental evaluation. it was found that flexural strength. compressive strength, elastic modulus and fracture toughness of recycled concrete at 28 days were approximately $45kg/cm^2$, $250kg/cm^2$, $230,000kg/cm^2$$0.863 MPa{\cdot}m^{1/2}$. respectively. Long term strength and fracture toughness were improved significantly at the age of 6 months. In conclusion. mechanical properties of the recycled concrete were acceptable for use as concrete pavement materials in low-volume roads in rural and urban areas.

Effect of specimen size on fracture toughness of reduced activation ferritic steel (JLF-l) (저방사화 철강재 (JLF-1)의 파괴인성에 미치는 시험편 크기의 영향)

  • Kim, Dong-Hyun;Yoon, Han-Ki;Park, Won-Jo;Katoh, Y.;Kohyama, A.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.300-305
    • /
    • 2003
  • Reduced activation ferritic (JLF-1) steel is leading candidates for blanket/first-wall structures of the D-T fusion reactor. In fusion application, structural materials will suffer effects of repeated changes of temperature. Therefore, the data base of tensile strength and fracture toughness at operated temperature $400^{\circ}C$ are very important. Fracture toughness ($J_{IC}$) and tensile tests were carried out at room temperature and elevated temperature ($400^{\circ}C$). Fracture toughness tests were performed with two type size to investigate the relationship between the constraint effect of a size and the fracture toughness resistance curve. As the results, the tensile strength and the fracture toughness values of the JLF-1 steel are slightly decreased with increasing temperature. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. The fracture toughness values of JLF-1 steel at room temperature and at $400^{\circ}C$ shows an excellent fracture toughness ($J_{IC}$) of about $530kJ/m^2\;and\;340kJ/m^2$, respectively.

  • PDF

Damage of Composite Laminates by Low-Velocity Impact (저속충격에 의한 복합재료 적층판의 손상)

  • AHN SEOK-HWAN;KIM JIN-WOOK;DO JAE-YOON;KIM HYUN-SOO;NAM KI-WOO
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.39-43
    • /
    • 2005
  • The study investigated the nondestructive characteristics of damage, caused by law-velocity impact, on symmetric cross-ply laminates, composed of [0o/90o]16s, 24s, 32s, 48s. The thickness of the laminates was 2, 3, 4 and 6 mm, respectively. The impact machine used, Model 8250 Dynatup Instron, was a drop-weight type that employed gravity. The impact velocities used in this experiment were 0.75, 0.90, 1.05, 1.20 and 1.35 m/sec, respectively. Both the load and the deformation increased when the impact velocity was increased. Further, when the load increased with the laminate thickness in the same impact velocity, the deformation still decreased. The extensional velocity was quick, as the laminate thickness increased in the same impact velocity and the impact velocity increased in the same laminate thickness. In the ultrasonic scans, the damaged area represented a dimmed zone. This is due to the fact that the wave, after the partial reflection by the deflects, does not have enough energy to touch the opposite side or to come back from it. The damaged laminate areas differed, according to the laminate thickness and the impact velocity. The extensional velocities are lower in the 0o direction and higher in the 90o direction, when the size of the defect increases. However, it was difficult to draw any conclusion for the extensional velocities in the 45o direction.

Ductile Fracture Predictions of High Strength Steel (EH36) using Linear and Non-Linear Damage Evolution Models (선형 및 비선형 손상 발전 모델을 이용한 고장력강(EH36)의 연성 파단 예측)

  • Park, Sung-Ju;Park, Byoungjae;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.288-298
    • /
    • 2017
  • A study of the damage evolution laws for ductile materials was carried out to predict the ductile fracture behavior of a marine structural steel (EH36). We conducted proportional and non-proportional stress tests in the experiments. The existing 3-D fracture strain surface was newly calibrated using two fracture parameters: the average stress triaxiality and average normalized load angle taken from the proportional tests. Linear and non-linear damage evolution models were taken into account in this study. A damage exponent of 3.0 for the non-linear damage model was determined based on a simple optimization technique, for which proportional and non-proportional stress tests were simultaneously used. We verified the validity of the three fracture models: the newly calibrated fracture strain model, linear damage evolution model, and non-linear damage evolution model for the tensile tests of the asymmetric notch specimens. Because the stress evolution pattern for the verification tests remained at mode I in terms of the linear elastic fracture mechanics, the three models did not show significant differences in their fracture initiation predictions.